MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnr Structured version   Visualization version   GIF version

Theorem relexpsucnnr 14991
Description: A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexpsucnnr ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))

Proof of Theorem relexpsucnnr
Dummy variables 𝑎 𝑏 𝑧 𝑛 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
2 simprr 772 . . . . 5 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → 𝑛 = (𝑁 + 1))
3 dmeq 5867 . . . . . . . . . . 11 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
4 rneq 5900 . . . . . . . . . . 11 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
53, 4uneq12d 4132 . . . . . . . . . 10 (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅))
65reseq2d 5950 . . . . . . . . 9 (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7 eqidd 2730 . . . . . . . . . . 11 (𝑟 = 𝑅 → 1 = 1)
8 coeq2 5822 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝑥𝑟) = (𝑥𝑅))
98mpoeq3dv 7468 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)))
10 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑅𝑟 = 𝑅)
1110mpteq2dv 5201 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
127, 9, 11seqeq123d 13975 . . . . . . . . . 10 (𝑟 = 𝑅 → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅)))
1312fveq1d 6860 . . . . . . . . 9 (𝑟 = 𝑅 → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))
146, 13ifeq12d 4510 . . . . . . . 8 (𝑟 = 𝑅 → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
1514ad2antrl 728 . . . . . . 7 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
1615a1i 11 . . . . . 6 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
17 eqeq1 2733 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (𝑛 = (𝑁 + 1) ↔ (𝑁 + 1) = (𝑁 + 1)))
1817anbi2d 630 . . . . . . 7 (𝑛 = (𝑁 + 1) → ((𝑟 = 𝑅𝑛 = (𝑁 + 1)) ↔ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))))
1918anbi2d 630 . . . . . 6 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) ↔ ((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1)))))
20 eqeq1 2733 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
21 fveq2 6858 . . . . . . . 8 (𝑛 = (𝑁 + 1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)))
2220, 21ifbieq2d 4515 . . . . . . 7 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))))
2322eqeq1d 2731 . . . . . 6 (𝑛 = (𝑁 + 1) → (if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ↔ if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
2416, 19, 233imtr4d 294 . . . . 5 (𝑛 = (𝑁 + 1) → (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))))
252, 24mpcom 38 . . . 4 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
26 elex 3468 . . . . 5 (𝑅𝑉𝑅 ∈ V)
2726adantr 480 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑅 ∈ V)
28 simpr 484 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2928peano2nnd 12203 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
3029nnnn0d 12503 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ0)
31 dmexg 7877 . . . . . . . 8 (𝑅𝑉 → dom 𝑅 ∈ V)
32 rnexg 7878 . . . . . . . 8 (𝑅𝑉 → ran 𝑅 ∈ V)
33 unexg 7719 . . . . . . . 8 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3431, 32, 33syl2anc 584 . . . . . . 7 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
35 resiexg 7888 . . . . . . 7 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
3634, 35syl 17 . . . . . 6 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
3736adantr 480 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
38 fvexd 6873 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) ∈ V)
3937, 38ifcld 4535 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ∈ V)
401, 25, 27, 30, 39ovmpod 7541 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))
41 nnne0 12220 . . . . . 6 ((𝑁 + 1) ∈ ℕ → (𝑁 + 1) ≠ 0)
4241neneqd 2930 . . . . 5 ((𝑁 + 1) ∈ ℕ → ¬ (𝑁 + 1) = 0)
4329, 42syl 17 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ¬ (𝑁 + 1) = 0)
4443iffalsed 4499 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))
45 elnnuz 12837 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
4645biimpi 216 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4746adantl 481 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
48 seqp1 13981 . . . . 5 (𝑁 ∈ (ℤ‘1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))))
4947, 48syl 17 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))))
50 ovex 7420 . . . . . 6 (𝑁 + 1) ∈ V
51 simpl 482 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑅𝑉)
52 eqidd 2730 . . . . . . 7 (𝑧 = (𝑁 + 1) → 𝑅 = 𝑅)
53 eqid 2729 . . . . . . 7 (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)
5452, 53fvmptg 6966 . . . . . 6 (((𝑁 + 1) ∈ V ∧ 𝑅𝑉) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅)
5550, 51, 54sylancr 587 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅)
5655oveq2d 7403 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅))
57 nfcv 2891 . . . . . . 7 𝑎(𝑥𝑅)
58 nfcv 2891 . . . . . . 7 𝑏(𝑥𝑅)
59 nfcv 2891 . . . . . . 7 𝑥(𝑎𝑅)
60 nfcv 2891 . . . . . . 7 𝑦(𝑎𝑅)
61 simpl 482 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
6261coeq1d 5825 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑅) = (𝑎𝑅))
6357, 58, 59, 60, 62cbvmpo 7483 . . . . . 6 (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))
64 oveq 7393 . . . . . 6 ((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅))
6563, 64mp1i 13 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅))
66 eqidd 2730 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅)))
67 simprl 770 . . . . . . 7 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → 𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
6867coeq1d 5825 . . . . . 6 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → (𝑎𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅))
69 fvexd 6873 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V)
70 fvex 6871 . . . . . . 7 (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V
71 coexg 7905 . . . . . . 7 (((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V ∧ 𝑅𝑉) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V)
7270, 51, 71sylancr 587 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V)
7366, 68, 69, 27, 72ovmpod 7541 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅))
74 simpr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑛 = 𝑁) → 𝑛 = 𝑁)
7574eqeq1d 2731 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → (𝑛 = 0 ↔ 𝑁 = 0))
766adantr 480 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7712adantr 480 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑛 = 𝑁) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅)))
7877, 74fveq12d 6865 . . . . . . . . . 10 ((𝑟 = 𝑅𝑛 = 𝑁) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
7975, 76, 78ifbieq12d 4517 . . . . . . . . 9 ((𝑟 = 𝑅𝑛 = 𝑁) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
8079adantl 481 . . . . . . . 8 (((𝑅𝑉𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅𝑛 = 𝑁)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
8128nnnn0d 12503 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
8237, 69ifcld 4535 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) ∈ V)
831, 80, 27, 81, 82ovmpod 7541 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)))
84 nnne0 12220 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8584adantl 481 . . . . . . . . 9 ((𝑅𝑉𝑁 ∈ ℕ) → 𝑁 ≠ 0)
8685neneqd 2930 . . . . . . . 8 ((𝑅𝑉𝑁 ∈ ℕ) → ¬ 𝑁 = 0)
8786iffalsed 4499 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))
8883, 87eqtr2d 2765 . . . . . 6 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁))
8988coeq1d 5825 . . . . 5 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9065, 73, 893eqtrd 2768 . . . 4 ((𝑅𝑉𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅))𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9149, 56, 903eqtrd 2768 . . 3 ((𝑅𝑉𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9240, 44, 913eqtrd 2768 . 2 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
93 df-relexp 14986 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
94 oveq 7393 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟(𝑁 + 1)) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)))
95 oveq 7393 . . . . . 6 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁))
9695coeq1d 5825 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))
9794, 96eqeq12d 2745 . . . 4 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))
9897imbi2d 340 . . 3 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))))
9993, 98ax-mp 5 . 2 (((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))
10092, 99mpbir 231 1 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cun 3912  ifcif 4488  cmpt 5188   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  cuz 12793  seqcseq 13966  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpsucnnl  14996  relexpsucr  14998  relexpcnv  15001  relexprelg  15004  relexpnndm  15007  relexp2  43666  relexpxpnnidm  43692  relexpss1d  43694  relexpmulnn  43698  trclrelexplem  43700  relexp0a  43705  trclfvcom  43712  cotrcltrcl  43714  trclfvdecomr  43717  cotrclrcl  43731
  Copyright terms: Public domain W3C validator