| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
| 2 | | simprr 772 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → 𝑛 = (𝑁 + 1)) |
| 3 | | dmeq 5888 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
| 4 | | rneq 5921 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
| 5 | 3, 4 | uneq12d 4149 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅)) |
| 6 | 5 | reseq2d 5971 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 7 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → 1 = 1) |
| 8 | | coeq2 5843 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (𝑥 ∘ 𝑟) = (𝑥 ∘ 𝑅)) |
| 9 | 8 | mpoeq3dv 7491 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))) |
| 10 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) |
| 11 | 10 | mpteq2dv 5220 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
| 12 | 7, 9, 11 | seqeq123d 14033 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))) |
| 13 | 12 | fveq1d 6883 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) |
| 14 | 6, 13 | ifeq12d 4527 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
| 15 | 14 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
| 17 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = (𝑁 + 1) ↔ (𝑁 + 1) = (𝑁 + 1))) |
| 18 | 17 | anbi2d 630 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → ((𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1)) ↔ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1)))) |
| 19 | 18 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))))) |
| 20 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0)) |
| 21 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) |
| 22 | 20, 21 | ifbieq2d 4532 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)))) |
| 23 | 22 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ↔ if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
| 24 | 16, 19, 23 | 3imtr4d 294 |
. . . . 5
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
| 25 | 2, 24 | mpcom 38 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
| 26 | | elex 3485 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ V) |
| 28 | | simpr 484 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
| 29 | 28 | peano2nnd 12262 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) |
| 30 | 29 | nnnn0d 12567 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈
ℕ0) |
| 31 | | dmexg 7902 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
| 32 | | rnexg 7903 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) |
| 33 | | unexg 7742 |
. . . . . . . 8
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
| 34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
| 35 | | resiexg 7913 |
. . . . . . 7
⊢ ((dom
𝑅 ∪ ran 𝑅) ∈ V → ( I ↾
(dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 37 | 36 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ( I ↾ (dom
𝑅 ∪ ran 𝑅)) ∈ V) |
| 38 | | fvexd 6896 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) ∈ V) |
| 39 | 37, 38 | ifcld 4552 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom
𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ∈ V) |
| 40 | 1, 25, 27, 30, 39 | ovmpod 7564 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
| 41 | | nnne0 12279 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ ℕ →
(𝑁 + 1) ≠
0) |
| 42 | 41 | neneqd 2938 |
. . . . 5
⊢ ((𝑁 + 1) ∈ ℕ →
¬ (𝑁 + 1) =
0) |
| 43 | 29, 42 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 + 1) = 0) |
| 44 | 43 | iffalsed 4516 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom
𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) |
| 45 | | elnnuz 12901 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| 46 | 45 | biimpi 216 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
| 47 | 46 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
(ℤ≥‘1)) |
| 48 | | seqp1 14039 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)))) |
| 49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)))) |
| 50 | | ovex 7443 |
. . . . . 6
⊢ (𝑁 + 1) ∈ V |
| 51 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ 𝑉) |
| 52 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑧 = (𝑁 + 1) → 𝑅 = 𝑅) |
| 53 | | eqid 2736 |
. . . . . . 7
⊢ (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅) |
| 54 | 52, 53 | fvmptg 6989 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅) |
| 55 | 50, 51, 54 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅) |
| 56 | 55 | oveq2d 7426 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅)) |
| 57 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑎(𝑥 ∘ 𝑅) |
| 58 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑏(𝑥 ∘ 𝑅) |
| 59 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑎 ∘ 𝑅) |
| 60 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑎 ∘ 𝑅) |
| 61 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) |
| 62 | 61 | coeq1d 5846 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 ∘ 𝑅) = (𝑎 ∘ 𝑅)) |
| 63 | 57, 58, 59, 60, 62 | cbvmpo 7506 |
. . . . . 6
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) |
| 64 | | oveq 7416 |
. . . . . 6
⊢ ((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅)) |
| 65 | 63, 64 | mp1i 13 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅)) |
| 66 | | eqidd 2737 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))) |
| 67 | | simprl 770 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → 𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
| 68 | 67 | coeq1d 5846 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → (𝑎 ∘ 𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅)) |
| 69 | | fvexd 6896 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V) |
| 70 | | fvex 6894 |
. . . . . . 7
⊢
(seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V |
| 71 | | coexg 7930 |
. . . . . . 7
⊢
(((seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V ∧ 𝑅 ∈ 𝑉) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V) |
| 72 | 70, 51, 71 | sylancr 587 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V) |
| 73 | 66, 68, 69, 27, 72 | ovmpod 7564 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅)) |
| 74 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) |
| 75 | 74 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 76 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
| 77 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))) |
| 78 | 77, 74 | fveq12d 6888 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
| 79 | 75, 76, 78 | ifbieq12d 4534 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
| 80 | 79 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = 𝑁)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
| 81 | 28 | nnnn0d 12567 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 82 | 37, 69 | ifcld 4552 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) ∈ V) |
| 83 | 1, 80, 27, 81, 82 | ovmpod 7564 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
| 84 | | nnne0 12279 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 85 | 84 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 86 | 85 | neneqd 2938 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 = 0) |
| 87 | 86 | iffalsed 4516 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
| 88 | 83, 87 | eqtr2d 2772 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁)) |
| 89 | 88 | coeq1d 5846 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
| 90 | 65, 73, 89 | 3eqtrd 2775 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
| 91 | 49, 56, 90 | 3eqtrd 2775 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
| 92 | 40, 44, 91 | 3eqtrd 2775 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
| 93 | | df-relexp 15044 |
. . 3
⊢
↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
| 94 | | oveq 7416 |
. . . . 5
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1))) |
| 95 | | oveq 7416 |
. . . . . 6
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅↑𝑟𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁)) |
| 96 | 95 | coeq1d 5846 |
. . . . 5
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅↑𝑟𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
| 97 | 94, 96 | eqeq12d 2752 |
. . . 4
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))) |
| 98 | 97 | imbi2d 340 |
. . 3
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))) |
| 99 | 93, 98 | ax-mp 5 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))) |
| 100 | 92, 99 | mpbir 231 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |