Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
2 | | simprr 770 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → 𝑛 = (𝑁 + 1)) |
3 | | dmeq 5812 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
4 | | rneq 5845 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
5 | 3, 4 | uneq12d 4098 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅)) |
6 | 5 | reseq2d 5891 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
7 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → 1 = 1) |
8 | | coeq2 5767 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (𝑥 ∘ 𝑟) = (𝑥 ∘ 𝑅)) |
9 | 8 | mpoeq3dv 7354 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))) |
10 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) |
11 | 10 | mpteq2dv 5176 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
12 | 7, 9, 11 | seqeq123d 13730 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))) |
13 | 12 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) |
14 | 6, 13 | ifeq12d 4480 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
15 | 14 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))) → if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
17 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = (𝑁 + 1) ↔ (𝑁 + 1) = (𝑁 + 1))) |
18 | 17 | anbi2d 629 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → ((𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1)) ↔ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1)))) |
19 | 18 | anbi2d 629 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ (𝑁 + 1) = (𝑁 + 1))))) |
20 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0)) |
21 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) |
22 | 20, 21 | ifbieq2d 4485 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1)))) |
23 | 22 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → (if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ↔ if((𝑁 + 1) = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘(𝑁 + 1))) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
24 | 16, 19, 23 | 3imtr4d 294 |
. . . . 5
⊢ (𝑛 = (𝑁 + 1) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))))) |
25 | 2, 24 | mpcom 38 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = (𝑁 + 1))) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
26 | | elex 3450 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
27 | 26 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ V) |
28 | | simpr 485 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
29 | 28 | peano2nnd 11990 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) |
30 | 29 | nnnn0d 12293 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈
ℕ0) |
31 | | dmexg 7750 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
32 | | rnexg 7751 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) |
33 | | unexg 7599 |
. . . . . . . 8
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
35 | | resiexg 7761 |
. . . . . . 7
⊢ ((dom
𝑅 ∪ ran 𝑅) ∈ V → ( I ↾
(dom 𝑅 ∪ ran 𝑅)) ∈ V) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
37 | 36 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ( I ↾ (dom
𝑅 ∪ ran 𝑅)) ∈ V) |
38 | | fvexd 6789 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) ∈ V) |
39 | 37, 38 | ifcld 4505 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom
𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) ∈ V) |
40 | 1, 25, 27, 30, 39 | ovmpod 7425 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = if((𝑁 + 1) = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)))) |
41 | | nnne0 12007 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ ℕ →
(𝑁 + 1) ≠
0) |
42 | 41 | neneqd 2948 |
. . . . 5
⊢ ((𝑁 + 1) ∈ ℕ →
¬ (𝑁 + 1) =
0) |
43 | 29, 42 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 + 1) = 0) |
44 | 43 | iffalsed 4470 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if((𝑁 + 1) = 0, ( I ↾ (dom
𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1))) |
45 | | elnnuz 12622 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
46 | 45 | biimpi 215 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
47 | 46 | adantl 482 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
(ℤ≥‘1)) |
48 | | seqp1 13736 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘1) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)))) |
49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)))) |
50 | | ovex 7308 |
. . . . . 6
⊢ (𝑁 + 1) ∈ V |
51 | | simpl 483 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ 𝑉) |
52 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑧 = (𝑁 + 1) → 𝑅 = 𝑅) |
53 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅) |
54 | 52, 53 | fvmptg 6873 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅) |
55 | 50, 51, 54 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1)) = 𝑅) |
56 | 55 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))((𝑧 ∈ V ↦ 𝑅)‘(𝑁 + 1))) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅)) |
57 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑎(𝑥 ∘ 𝑅) |
58 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑏(𝑥 ∘ 𝑅) |
59 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑎 ∘ 𝑅) |
60 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑎 ∘ 𝑅) |
61 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) |
62 | 61 | coeq1d 5770 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 ∘ 𝑅) = (𝑎 ∘ 𝑅)) |
63 | 57, 58, 59, 60, 62 | cbvmpo 7369 |
. . . . . 6
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) |
64 | | oveq 7281 |
. . . . . 6
⊢ ((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅)) |
65 | 63, 64 | mp1i 13 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅)) |
66 | | eqidd 2739 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))) |
67 | | simprl 768 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → 𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
68 | 67 | coeq1d 5770 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∧ 𝑏 = 𝑅)) → (𝑎 ∘ 𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅)) |
69 | | fvexd 6789 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V) |
70 | | fvex 6787 |
. . . . . . 7
⊢
(seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V |
71 | | coexg 7776 |
. . . . . . 7
⊢
(((seq1((𝑥 ∈ V,
𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∈ V ∧ 𝑅 ∈ 𝑉) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V) |
72 | 70, 51, 71 | sylancr 587 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) ∈ V) |
73 | 66, 68, 69, 27, 72 | ovmpod 7425 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∘ 𝑅))𝑅) = ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅)) |
74 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) |
75 | 74 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → (𝑛 = 0 ↔ 𝑁 = 0)) |
76 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
77 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))) |
78 | 77, 74 | fveq12d 6781 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
79 | 75, 76, 78 | ifbieq12d 4487 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑛 = 𝑁) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
80 | 79 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (𝑟 = 𝑅 ∧ 𝑛 = 𝑁)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
81 | 28 | nnnn0d 12293 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
82 | 37, 69 | ifcld 4505 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) ∈ V) |
83 | 1, 80, 27, 81, 82 | ovmpod 7425 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) = if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁))) |
84 | | nnne0 12007 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
85 | 84 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
86 | 85 | neneqd 2948 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 = 0) |
87 | 86 | iffalsed 4470 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → if(𝑁 = 0, ( I ↾ (dom 𝑅 ∪ ran 𝑅)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)) |
88 | 83, 87 | eqtr2d 2779 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁)) |
89 | 88 | coeq1d 5770 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
90 | 65, 73, 89 | 3eqtrd 2782 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘𝑁)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅))𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
91 | 49, 56, 90 | 3eqtrd 2782 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑅)), (𝑧 ∈ V ↦ 𝑅))‘(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
92 | 40, 44, 91 | 3eqtrd 2782 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
93 | | df-relexp 14731 |
. . 3
⊢
↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
94 | | oveq 7281 |
. . . . 5
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1))) |
95 | | oveq 7281 |
. . . . . 6
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅↑𝑟𝑁) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁)) |
96 | 95 | coeq1d 5770 |
. . . . 5
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅↑𝑟𝑁) ∘ 𝑅) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)) |
97 | 94, 96 | eqeq12d 2754 |
. . . 4
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))) |
98 | 97 | imbi2d 341 |
. . 3
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅)))) |
99 | 93, 98 | ax-mp 5 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) ↔ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))(𝑁 + 1)) = ((𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))𝑁) ∘ 𝑅))) |
100 | 92, 99 | mpbir 230 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |