Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
2 | | simprr 769 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 0)) → 𝑛 = 0) |
3 | 2 | iftrued 4464 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑟 ∪ ran 𝑟))) |
4 | | dmeq 5801 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
5 | | rneq 5834 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
6 | 4, 5 | uneq12d 4094 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅)) |
7 | 6 | reseq2d 5880 |
. . . . 5
⊢ (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | 7 | ad2antrl 724 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 0)) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
9 | 3, 8 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
10 | | elex 3440 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
11 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
12 | 11 | a1i 11 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 0 ∈
ℕ0) |
13 | | dmexg 7724 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
14 | | rnexg 7725 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) |
15 | | unexg 7577 |
. . . . 5
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
16 | 13, 14, 15 | syl2anc 583 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
17 | | resiexg 7735 |
. . . 4
⊢ ((dom
𝑅 ∪ ran 𝑅) ∈ V → ( I ↾
(dom 𝑅 ∪ ran 𝑅)) ∈ V) |
18 | 16, 17 | syl 17 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
19 | 1, 9, 10, 12, 18 | ovmpod 7403 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
20 | | df-relexp 14659 |
. . 3
⊢
↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
21 | | oveq 7261 |
. . . . 5
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅↑𝑟0) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0)) |
22 | 21 | eqeq1d 2740 |
. . . 4
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅)) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
23 | 22 | imbi2d 340 |
. . 3
⊢
(↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅 ∈ 𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))) |
24 | 20, 23 | ax-mp 5 |
. 2
⊢ ((𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅 ∈ 𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
25 | 19, 24 | mpbir 230 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |