MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0g Structured version   Visualization version   GIF version

Theorem relexp0g 14988
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp0g (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))

Proof of Theorem relexp0g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . 3 (𝑅𝑉 → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
2 simprr 772 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → 𝑛 = 0)
32iftrued 4496 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
4 dmeq 5867 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
5 rneq 5900 . . . . . . 7 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
64, 5uneq12d 4132 . . . . . 6 (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅))
76reseq2d 5950 . . . . 5 (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
87ad2antrl 728 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
93, 8eqtrd 2764 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10 elex 3468 . . 3 (𝑅𝑉𝑅 ∈ V)
11 0nn0 12457 . . . 4 0 ∈ ℕ0
1211a1i 11 . . 3 (𝑅𝑉 → 0 ∈ ℕ0)
13 dmexg 7877 . . . . 5 (𝑅𝑉 → dom 𝑅 ∈ V)
14 rnexg 7878 . . . . 5 (𝑅𝑉 → ran 𝑅 ∈ V)
15 unexg 7719 . . . . 5 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
1613, 14, 15syl2anc 584 . . . 4 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
17 resiexg 7888 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1816, 17syl 17 . . 3 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
191, 9, 10, 12, 18ovmpod 7541 . 2 (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
20 df-relexp 14986 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21 oveq 7393 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟0) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0))
2221eqeq1d 2731 . . . 4 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2322imbi2d 340 . . 3 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2420, 23ax-mp 5 . 2 ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2519, 24mpbir 231 1 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  ifcif 4488  cmpt 5188   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069  0cn0 12442  seqcseq 13966  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-n0 12443  df-relexp 14986
This theorem is referenced by:  relexp0  14989  relexpcnv  15001  relexp0rel  15003  relexpdmg  15008  relexprng  15012  relexpfld  15015  relexpaddg  15019  dfrcl3  43664  fvmptiunrelexplb0d  43673  brfvrcld2  43681  relexp0eq  43690  iunrelexp0  43691  relexpiidm  43693  relexpss1d  43694  relexpmulg  43699  iunrelexpmin2  43701  relexp01min  43702  relexp0a  43705  relexpxpmin  43706  relexpaddss  43707  dfrtrcl3  43722  cotrclrcl  43731
  Copyright terms: Public domain W3C validator