MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0g Structured version   Visualization version   GIF version

Theorem relexp0g 14373
Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp0g (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))

Proof of Theorem relexp0g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . . 3 (𝑅𝑉 → (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
2 simprr 772 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → 𝑛 = 0)
32iftrued 4433 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
4 dmeq 5736 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
5 rneq 5770 . . . . . . 7 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
64, 5uneq12d 4091 . . . . . 6 (𝑟 = 𝑅 → (dom 𝑟 ∪ ran 𝑟) = (dom 𝑅 ∪ ran 𝑅))
76reseq2d 5818 . . . . 5 (𝑟 = 𝑅 → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
87ad2antrl 727 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
93, 8eqtrd 2833 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 0)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10 elex 3459 . . 3 (𝑅𝑉𝑅 ∈ V)
11 0nn0 11900 . . . 4 0 ∈ ℕ0
1211a1i 11 . . 3 (𝑅𝑉 → 0 ∈ ℕ0)
13 dmexg 7594 . . . . 5 (𝑅𝑉 → dom 𝑅 ∈ V)
14 rnexg 7595 . . . . 5 (𝑅𝑉 → ran 𝑅 ∈ V)
15 unexg 7452 . . . . 5 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
1613, 14, 15syl2anc 587 . . . 4 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
17 resiexg 7601 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1816, 17syl 17 . . 3 (𝑅𝑉 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
191, 9, 10, 12, 18ovmpod 7281 . 2 (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
20 df-relexp 14371 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21 oveq 7141 . . . . 5 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → (𝑅𝑟0) = (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0))
2221eqeq1d 2800 . . . 4 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2322imbi2d 344 . . 3 (↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) → ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))))
2420, 23ax-mp 5 . 2 ((𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ↔ (𝑅𝑉 → (𝑅(𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
2519, 24mpbir 234 1 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879  ifcif 4425  cmpt 5110   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527  0cn0 11885  seqcseq 13364  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-n0 11886  df-relexp 14371
This theorem is referenced by:  relexp0  14374  relexpcnv  14386  relexp0rel  14388  relexpdmg  14393  relexprng  14397  relexpfld  14400  relexpaddg  14404  dfrcl3  40376  fvmptiunrelexplb0d  40385  brfvrcld2  40393  relexp0eq  40402  iunrelexp0  40403  relexpiidm  40405  relexpss1d  40406  relexpmulg  40411  iunrelexpmin2  40413  relexp01min  40414  relexp0a  40417  relexpxpmin  40418  relexpaddss  40419  dfrtrcl3  40434  cotrclrcl  40443
  Copyright terms: Public domain W3C validator