MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp1g Structured version   Visualization version   GIF version

Theorem relexp1g 14380
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp1g (𝑅𝑉 → (𝑅𝑟1) = 𝑅)

Proof of Theorem relexp1g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14375 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21a1i 11 . 2 (𝑅𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
3 simprr 772 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 = 1)
4 ax-1ne0 10599 . . . . . . 7 1 ≠ 0
5 neeq1 3052 . . . . . . 7 (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 261 . . . . . 6 (𝑛 = 1 → 𝑛 ≠ 0)
73, 6syl 17 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 ≠ 0)
87neneqd 2995 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ¬ 𝑛 = 0)
98iffalsed 4439 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
10 simprl 770 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑟 = 𝑅)
1110mpteq2dv 5129 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
1211seqeq3d 13376 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅)))
1312, 3fveq12d 6656 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1))
14 1z 12004 . . . 4 1 ∈ ℤ
15 eqidd 2802 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅))
16 eqidd 2802 . . . . 5 (((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅)
17 1ex 10630 . . . . . 6 1 ∈ V
1817a1i 11 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 1 ∈ V)
19 simpl 486 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑅𝑉)
2015, 16, 18, 19fvmptd 6756 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅)
2114, 20seq1i 13382 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅)
229, 13, 213eqtrd 2840 . 2 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅)
23 elex 3462 . 2 (𝑅𝑉𝑅 ∈ V)
24 1nn0 11905 . . 3 1 ∈ ℕ0
2524a1i 11 . 2 (𝑅𝑉 → 1 ∈ ℕ0)
262, 22, 23, 25, 23ovmpod 7285 1 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444  cun 3882  ifcif 4428  cmpt 5113   I cid 5427  dom cdm 5523  ran crn 5524  cres 5525  ccom 5527  cfv 6328  (class class class)co 7139  cmpo 7141  0cc0 10530  1c1 10531  0cn0 11889  seqcseq 13368  𝑟crelexp 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-relexp 14375
This theorem is referenced by:  dfid5  14381  dfid6  14382  relexpsucr  14383  relexp1d  14385  relexpsucnnl  14386  relexpsucl  14387  relexpcnv  14389  relexprelg  14392  relexpnndm  14395  relexpfld  14403  relexpaddnn  14405  relexpaddg  14407  dfrcl3  40363  relexp2  40365  iunrelexp0  40390  relexpxpnnidm  40391  corclrcl  40395  iunrelexpmin1  40396  trclrelexplem  40399  iunrelexpmin2  40400  relexp01min  40401  relexp0a  40404  relexpaddss  40406  dftrcl3  40408  cotrcltrcl  40413  trclimalb2  40414  trclfvdecomr  40416  dfrtrcl3  40421  corcltrcl  40427  cotrclrcl  40430
  Copyright terms: Public domain W3C validator