Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexp1g | Structured version Visualization version GIF version |
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
Ref | Expression |
---|---|
relexp1g | ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-relexp 14731 | . . 3 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
3 | simprr 770 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 = 1) | |
4 | ax-1ne0 10940 | . . . . . . 7 ⊢ 1 ≠ 0 | |
5 | neeq1 3006 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0)) | |
6 | 4, 5 | mpbiri 257 | . . . . . 6 ⊢ (𝑛 = 1 → 𝑛 ≠ 0) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 ≠ 0) |
8 | 7 | neneqd 2948 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ¬ 𝑛 = 0) |
9 | 8 | iffalsed 4470 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
10 | simprl 768 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑟 = 𝑅) | |
11 | 10 | mpteq2dv 5176 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
12 | 11 | seqeq3d 13729 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))) |
13 | 12, 3 | fveq12d 6781 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1)) |
14 | 1z 12350 | . . . 4 ⊢ 1 ∈ ℤ | |
15 | eqidd 2739 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)) | |
16 | eqidd 2739 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅) | |
17 | 1ex 10971 | . . . . . 6 ⊢ 1 ∈ V | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 1 ∈ V) |
19 | simpl 483 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑅 ∈ 𝑉) | |
20 | 15, 16, 18, 19 | fvmptd 6882 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅) |
21 | 14, 20 | seq1i 13735 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅) |
22 | 9, 13, 21 | 3eqtrd 2782 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅) |
23 | elex 3450 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
24 | 1nn0 12249 | . . 3 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 ∈ ℕ0) |
26 | 2, 22, 23, 25, 23 | ovmpod 7425 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∪ cun 3885 ifcif 4459 ↦ cmpt 5157 I cid 5488 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 1c1 10872 ℕ0cn0 12233 seqcseq 13721 ↑𝑟crelexp 14730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-relexp 14731 |
This theorem is referenced by: dfid5 14738 dfid6 14739 relexp1d 14740 relexpsucnnl 14741 relexpsucl 14742 relexpsucr 14743 relexpcnv 14746 relexprelg 14749 relexpnndm 14752 relexpfld 14760 relexpaddnn 14762 relexpaddg 14764 dfrcl3 41283 relexp2 41285 iunrelexp0 41310 relexpxpnnidm 41311 corclrcl 41315 iunrelexpmin1 41316 trclrelexplem 41319 iunrelexpmin2 41320 relexp01min 41321 relexp0a 41324 relexpaddss 41326 dftrcl3 41328 cotrcltrcl 41333 trclimalb2 41334 trclfvdecomr 41336 dfrtrcl3 41341 corcltrcl 41347 cotrclrcl 41350 |
Copyright terms: Public domain | W3C validator |