| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexp1g | Structured version Visualization version GIF version | ||
| Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
| Ref | Expression |
|---|---|
| relexp1g | ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 14993 | . . 3 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
| 3 | simprr 772 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 = 1) | |
| 4 | ax-1ne0 11144 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 5 | neeq1 2988 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑛 = 1 → 𝑛 ≠ 0) |
| 7 | 3, 6 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 ≠ 0) |
| 8 | 7 | neneqd 2931 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ¬ 𝑛 = 0) |
| 9 | 8 | iffalsed 4502 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
| 10 | simprl 770 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑟 = 𝑅) | |
| 11 | 10 | mpteq2dv 5204 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
| 12 | 11 | seqeq3d 13981 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))) |
| 13 | 12, 3 | fveq12d 6868 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1)) |
| 14 | 1z 12570 | . . . 4 ⊢ 1 ∈ ℤ | |
| 15 | eqidd 2731 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)) | |
| 16 | eqidd 2731 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅) | |
| 17 | 1ex 11177 | . . . . . 6 ⊢ 1 ∈ V | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 1 ∈ V) |
| 19 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑅 ∈ 𝑉) | |
| 20 | 15, 16, 18, 19 | fvmptd 6978 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅) |
| 21 | 14, 20 | seq1i 13987 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅) |
| 22 | 9, 13, 21 | 3eqtrd 2769 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅) |
| 23 | elex 3471 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 24 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 ∈ ℕ0) |
| 26 | 2, 22, 23, 25, 23 | ovmpod 7544 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∪ cun 3915 ifcif 4491 ↦ cmpt 5191 I cid 5535 dom cdm 5641 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 1c1 11076 ℕ0cn0 12449 seqcseq 13973 ↑𝑟crelexp 14992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-relexp 14993 |
| This theorem is referenced by: dfid5 15000 dfid6 15001 relexp1d 15002 relexpsucnnl 15003 relexpsucl 15004 relexpsucr 15005 relexpcnv 15008 relexprelg 15011 relexpnndm 15014 relexpfld 15022 relexpaddnn 15024 relexpaddg 15026 dfrcl3 43671 relexp2 43673 iunrelexp0 43698 relexpxpnnidm 43699 corclrcl 43703 iunrelexpmin1 43704 trclrelexplem 43707 iunrelexpmin2 43708 relexp01min 43709 relexp0a 43712 relexpaddss 43714 dftrcl3 43716 cotrcltrcl 43721 trclimalb2 43722 trclfvdecomr 43724 dfrtrcl3 43729 corcltrcl 43735 cotrclrcl 43738 |
| Copyright terms: Public domain | W3C validator |