MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp1g Structured version   Visualization version   GIF version

Theorem relexp1g 15075
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp1g (𝑅𝑉 → (𝑅𝑟1) = 𝑅)

Proof of Theorem relexp1g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 15069 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21a1i 11 . 2 (𝑅𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
3 simprr 772 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 = 1)
4 ax-1ne0 11253 . . . . . . 7 1 ≠ 0
5 neeq1 3009 . . . . . . 7 (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 258 . . . . . 6 (𝑛 = 1 → 𝑛 ≠ 0)
73, 6syl 17 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 ≠ 0)
87neneqd 2951 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ¬ 𝑛 = 0)
98iffalsed 4559 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
10 simprl 770 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑟 = 𝑅)
1110mpteq2dv 5268 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
1211seqeq3d 14060 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅)))
1312, 3fveq12d 6927 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1))
14 1z 12673 . . . 4 1 ∈ ℤ
15 eqidd 2741 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅))
16 eqidd 2741 . . . . 5 (((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅)
17 1ex 11286 . . . . . 6 1 ∈ V
1817a1i 11 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 1 ∈ V)
19 simpl 482 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑅𝑉)
2015, 16, 18, 19fvmptd 7036 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅)
2114, 20seq1i 14066 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅)
229, 13, 213eqtrd 2784 . 2 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅)
23 elex 3509 . 2 (𝑅𝑉𝑅 ∈ V)
24 1nn0 12569 . . 3 1 ∈ ℕ0
2524a1i 11 . 2 (𝑅𝑉 → 1 ∈ ℕ0)
262, 22, 23, 25, 23ovmpod 7602 1 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  ifcif 4548  cmpt 5249   I cid 5592  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  0cn0 12553  seqcseq 14052  𝑟crelexp 15068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-relexp 15069
This theorem is referenced by:  dfid5  15076  dfid6  15077  relexp1d  15078  relexpsucnnl  15079  relexpsucl  15080  relexpsucr  15081  relexpcnv  15084  relexprelg  15087  relexpnndm  15090  relexpfld  15098  relexpaddnn  15100  relexpaddg  15102  dfrcl3  43637  relexp2  43639  iunrelexp0  43664  relexpxpnnidm  43665  corclrcl  43669  iunrelexpmin1  43670  trclrelexplem  43673  iunrelexpmin2  43674  relexp01min  43675  relexp0a  43678  relexpaddss  43680  dftrcl3  43682  cotrcltrcl  43687  trclimalb2  43688  trclfvdecomr  43690  dfrtrcl3  43695  corcltrcl  43701  cotrclrcl  43704
  Copyright terms: Public domain W3C validator