| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexp1g | Structured version Visualization version GIF version | ||
| Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
| Ref | Expression |
|---|---|
| relexp1g | ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 15042 | . . 3 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
| 3 | simprr 772 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 = 1) | |
| 4 | ax-1ne0 11206 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 5 | neeq1 2993 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑛 = 1 → 𝑛 ≠ 0) |
| 7 | 3, 6 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 ≠ 0) |
| 8 | 7 | neneqd 2936 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ¬ 𝑛 = 0) |
| 9 | 8 | iffalsed 4516 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
| 10 | simprl 770 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑟 = 𝑅) | |
| 11 | 10 | mpteq2dv 5224 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
| 12 | 11 | seqeq3d 14032 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))) |
| 13 | 12, 3 | fveq12d 6893 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1)) |
| 14 | 1z 12630 | . . . 4 ⊢ 1 ∈ ℤ | |
| 15 | eqidd 2735 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)) | |
| 16 | eqidd 2735 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅) | |
| 17 | 1ex 11239 | . . . . . 6 ⊢ 1 ∈ V | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 1 ∈ V) |
| 19 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑅 ∈ 𝑉) | |
| 20 | 15, 16, 18, 19 | fvmptd 7003 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅) |
| 21 | 14, 20 | seq1i 14038 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅) |
| 22 | 9, 13, 21 | 3eqtrd 2773 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅) |
| 23 | elex 3484 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 24 | 1nn0 12525 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 ∈ ℕ0) |
| 26 | 2, 22, 23, 25, 23 | ovmpod 7567 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∪ cun 3929 ifcif 4505 ↦ cmpt 5205 I cid 5557 dom cdm 5665 ran crn 5666 ↾ cres 5667 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 0cc0 11137 1c1 11138 ℕ0cn0 12509 seqcseq 14024 ↑𝑟crelexp 15041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 df-relexp 15042 |
| This theorem is referenced by: dfid5 15049 dfid6 15050 relexp1d 15051 relexpsucnnl 15052 relexpsucl 15053 relexpsucr 15054 relexpcnv 15057 relexprelg 15060 relexpnndm 15063 relexpfld 15071 relexpaddnn 15073 relexpaddg 15075 dfrcl3 43665 relexp2 43667 iunrelexp0 43692 relexpxpnnidm 43693 corclrcl 43697 iunrelexpmin1 43698 trclrelexplem 43701 iunrelexpmin2 43702 relexp01min 43703 relexp0a 43706 relexpaddss 43708 dftrcl3 43710 cotrcltrcl 43715 trclimalb2 43716 trclfvdecomr 43718 dfrtrcl3 43723 corcltrcl 43729 cotrclrcl 43732 |
| Copyright terms: Public domain | W3C validator |