| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexp1g | Structured version Visualization version GIF version | ||
| Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
| Ref | Expression |
|---|---|
| relexp1g | ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relexp 14927 | . . 3 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
| 3 | simprr 772 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 = 1) | |
| 4 | ax-1ne0 11078 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 5 | neeq1 2987 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑛 = 1 → 𝑛 ≠ 0) |
| 7 | 3, 6 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 ≠ 0) |
| 8 | 7 | neneqd 2930 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ¬ 𝑛 = 0) |
| 9 | 8 | iffalsed 4487 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
| 10 | simprl 770 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑟 = 𝑅) | |
| 11 | 10 | mpteq2dv 5186 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
| 12 | 11 | seqeq3d 13916 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))) |
| 13 | 12, 3 | fveq12d 6829 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1)) |
| 14 | 1z 12505 | . . . 4 ⊢ 1 ∈ ℤ | |
| 15 | eqidd 2730 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)) | |
| 16 | eqidd 2730 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅) | |
| 17 | 1ex 11111 | . . . . . 6 ⊢ 1 ∈ V | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 1 ∈ V) |
| 19 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑅 ∈ 𝑉) | |
| 20 | 15, 16, 18, 19 | fvmptd 6937 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅) |
| 21 | 14, 20 | seq1i 13922 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅) |
| 22 | 9, 13, 21 | 3eqtrd 2768 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅) |
| 23 | elex 3457 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 24 | 1nn0 12400 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 ∈ ℕ0) |
| 26 | 2, 22, 23, 25, 23 | ovmpod 7501 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∪ cun 3901 ifcif 4476 ↦ cmpt 5173 I cid 5513 dom cdm 5619 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 0cc0 11009 1c1 11010 ℕ0cn0 12384 seqcseq 13908 ↑𝑟crelexp 14926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-relexp 14927 |
| This theorem is referenced by: dfid5 14934 dfid6 14935 relexp1d 14936 relexpsucnnl 14937 relexpsucl 14938 relexpsucr 14939 relexpcnv 14942 relexprelg 14945 relexpnndm 14948 relexpfld 14956 relexpaddnn 14958 relexpaddg 14960 dfrcl3 43648 relexp2 43650 iunrelexp0 43675 relexpxpnnidm 43676 corclrcl 43680 iunrelexpmin1 43681 trclrelexplem 43684 iunrelexpmin2 43685 relexp01min 43686 relexp0a 43689 relexpaddss 43691 dftrcl3 43693 cotrcltrcl 43698 trclimalb2 43699 trclfvdecomr 43701 dfrtrcl3 43706 corcltrcl 43712 cotrclrcl 43715 |
| Copyright terms: Public domain | W3C validator |