MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp1g Structured version   Visualization version   GIF version

Theorem relexp1g 14244
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp1g (𝑅𝑉 → (𝑅𝑟1) = 𝑅)

Proof of Theorem relexp1g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14239 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21a1i 11 . 2 (𝑅𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
3 simprr 760 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 = 1)
4 ax-1ne0 10402 . . . . . . 7 1 ≠ 0
5 neeq1 3023 . . . . . . 7 (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 250 . . . . . 6 (𝑛 = 1 → 𝑛 ≠ 0)
73, 6syl 17 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 ≠ 0)
87neneqd 2966 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ¬ 𝑛 = 0)
98iffalsed 4355 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
10 simprl 758 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑟 = 𝑅)
1110mpteq2dv 5019 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
1211seqeq3d 13190 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅)))
1312, 3fveq12d 6503 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1))
14 1z 11823 . . . 4 1 ∈ ℤ
15 eqidd 2773 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅))
16 eqidd 2773 . . . . 5 (((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅)
17 1ex 10433 . . . . . 6 1 ∈ V
1817a1i 11 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 1 ∈ V)
19 simpl 475 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑅𝑉)
2015, 16, 18, 19fvmptd 6599 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅)
2114, 20seq1i 13196 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅)
229, 13, 213eqtrd 2812 . 2 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅)
23 elex 3427 . 2 (𝑅𝑉𝑅 ∈ V)
24 1nn0 11723 . . 3 1 ∈ ℕ0
2524a1i 11 . 2 (𝑅𝑉 → 1 ∈ ℕ0)
262, 22, 23, 25, 23ovmpod 7116 1 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2961  Vcvv 3409  cun 3821  ifcif 4344  cmpt 5004   I cid 5307  dom cdm 5403  ran crn 5404  cres 5405  ccom 5407  cfv 6185  (class class class)co 6974  cmpo 6976  0cc0 10333  1c1 10334  0cn0 11705  seqcseq 13182  𝑟crelexp 14238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-seq 13183  df-relexp 14239
This theorem is referenced by:  dfid5  14245  dfid6  14246  relexpsucr  14247  relexp1d  14249  relexpsucnnl  14250  relexpsucl  14251  relexpcnv  14253  relexprelg  14256  relexpnndm  14259  relexpfld  14267  relexpaddnn  14269  relexpaddg  14271  dfrcl3  39412  relexp2  39414  iunrelexp0  39439  relexpxpnnidm  39440  corclrcl  39444  iunrelexpmin1  39445  trclrelexplem  39448  iunrelexpmin2  39449  relexp01min  39450  relexp0a  39453  relexpaddss  39455  dftrcl3  39457  cotrcltrcl  39462  trclimalb2  39463  trclfvdecomr  39465  dfrtrcl3  39470  corcltrcl  39476  cotrclrcl  39479
  Copyright terms: Public domain W3C validator