MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp1g Structured version   Visualization version   GIF version

Theorem relexp1g 14665
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp1g (𝑅𝑉 → (𝑅𝑟1) = 𝑅)

Proof of Theorem relexp1g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14659 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21a1i 11 . 2 (𝑅𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
3 simprr 769 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 = 1)
4 ax-1ne0 10871 . . . . . . 7 1 ≠ 0
5 neeq1 3005 . . . . . . 7 (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 257 . . . . . 6 (𝑛 = 1 → 𝑛 ≠ 0)
73, 6syl 17 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 ≠ 0)
87neneqd 2947 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ¬ 𝑛 = 0)
98iffalsed 4467 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
10 simprl 767 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑟 = 𝑅)
1110mpteq2dv 5172 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
1211seqeq3d 13657 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅)))
1312, 3fveq12d 6763 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1))
14 1z 12280 . . . 4 1 ∈ ℤ
15 eqidd 2739 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅))
16 eqidd 2739 . . . . 5 (((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅)
17 1ex 10902 . . . . . 6 1 ∈ V
1817a1i 11 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 1 ∈ V)
19 simpl 482 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑅𝑉)
2015, 16, 18, 19fvmptd 6864 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅)
2114, 20seq1i 13663 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅)
229, 13, 213eqtrd 2782 . 2 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅)
23 elex 3440 . 2 (𝑅𝑉𝑅 ∈ V)
24 1nn0 12179 . . 3 1 ∈ ℕ0
2524a1i 11 . 2 (𝑅𝑉 → 1 ∈ ℕ0)
262, 22, 23, 25, 23ovmpod 7403 1 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cun 3881  ifcif 4456  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  0cn0 12163  seqcseq 13649  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by:  dfid5  14666  dfid6  14667  relexp1d  14668  relexpsucnnl  14669  relexpsucl  14670  relexpsucr  14671  relexpcnv  14674  relexprelg  14677  relexpnndm  14680  relexpfld  14688  relexpaddnn  14690  relexpaddg  14692  dfrcl3  41172  relexp2  41174  iunrelexp0  41199  relexpxpnnidm  41200  corclrcl  41204  iunrelexpmin1  41205  trclrelexplem  41208  iunrelexpmin2  41209  relexp01min  41210  relexp0a  41213  relexpaddss  41215  dftrcl3  41217  cotrcltrcl  41222  trclimalb2  41223  trclfvdecomr  41225  dfrtrcl3  41230  corcltrcl  41236  cotrclrcl  41239
  Copyright terms: Public domain W3C validator