![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexp1g | Structured version Visualization version GIF version |
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.) |
Ref | Expression |
---|---|
relexp1g | ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-relexp 14914 | . . 3 ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))) |
3 | simprr 772 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 = 1) | |
4 | ax-1ne0 11128 | . . . . . . 7 ⊢ 1 ≠ 0 | |
5 | neeq1 3003 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0)) | |
6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑛 = 1 → 𝑛 ≠ 0) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑛 ≠ 0) |
8 | 7 | neneqd 2945 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ¬ 𝑛 = 0) |
9 | 8 | iffalsed 4501 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) |
10 | simprl 770 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑟 = 𝑅) | |
11 | 10 | mpteq2dv 5211 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅)) |
12 | 11 | seqeq3d 13923 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))) |
13 | 12, 3 | fveq12d 6853 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1)) |
14 | 1z 12541 | . . . 4 ⊢ 1 ∈ ℤ | |
15 | eqidd 2734 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅)) | |
16 | eqidd 2734 | . . . . 5 ⊢ (((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅) | |
17 | 1ex 11159 | . . . . . 6 ⊢ 1 ∈ V | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 1 ∈ V) |
19 | simpl 484 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → 𝑅 ∈ 𝑉) | |
20 | 15, 16, 18, 19 | fvmptd 6959 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅) |
21 | 14, 20 | seq1i 13929 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅) |
22 | 9, 13, 21 | 3eqtrd 2777 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑟 = 𝑅 ∧ 𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅) |
23 | elex 3465 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
24 | 1nn0 12437 | . . 3 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 ∈ ℕ0) |
26 | 2, 22, 23, 25, 23 | ovmpod 7511 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 Vcvv 3447 ∪ cun 3912 ifcif 4490 ↦ cmpt 5192 I cid 5534 dom cdm 5637 ran crn 5638 ↾ cres 5639 ∘ ccom 5641 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 0cc0 11059 1c1 11060 ℕ0cn0 12421 seqcseq 13915 ↑𝑟crelexp 14913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-seq 13916 df-relexp 14914 |
This theorem is referenced by: dfid5 14921 dfid6 14922 relexp1d 14923 relexpsucnnl 14924 relexpsucl 14925 relexpsucr 14926 relexpcnv 14929 relexprelg 14932 relexpnndm 14935 relexpfld 14943 relexpaddnn 14945 relexpaddg 14947 dfrcl3 42039 relexp2 42041 iunrelexp0 42066 relexpxpnnidm 42067 corclrcl 42071 iunrelexpmin1 42072 trclrelexplem 42075 iunrelexpmin2 42076 relexp01min 42077 relexp0a 42080 relexpaddss 42082 dftrcl3 42084 cotrcltrcl 42089 trclimalb2 42090 trclfvdecomr 42092 dfrtrcl3 42097 corcltrcl 42103 cotrclrcl 42106 |
Copyright terms: Public domain | W3C validator |