MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp1g Structured version   Visualization version   GIF version

Theorem relexp1g 14968
Description: A relation composed once is itself. (Contributed by RP, 22-May-2020.)
Assertion
Ref Expression
relexp1g (𝑅𝑉 → (𝑅𝑟1) = 𝑅)

Proof of Theorem relexp1g
Dummy variables 𝑛 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relexp 14962 . . 3 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
21a1i 11 . 2 (𝑅𝑉 → ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))))
3 simprr 772 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 = 1)
4 ax-1ne0 11113 . . . . . . 7 1 ≠ 0
5 neeq1 2987 . . . . . . 7 (𝑛 = 1 → (𝑛 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 258 . . . . . 6 (𝑛 = 1 → 𝑛 ≠ 0)
73, 6syl 17 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑛 ≠ 0)
87neneqd 2930 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ¬ 𝑛 = 0)
98iffalsed 4495 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
10 simprl 770 . . . . . 6 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑟 = 𝑅)
1110mpteq2dv 5196 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑟) = (𝑧 ∈ V ↦ 𝑅))
1211seqeq3d 13950 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟)) = seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅)))
1312, 3fveq12d 6847 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛) = (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1))
14 1z 12539 . . . 4 1 ∈ ℤ
15 eqidd 2730 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (𝑧 ∈ V ↦ 𝑅) = (𝑧 ∈ V ↦ 𝑅))
16 eqidd 2730 . . . . 5 (((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) ∧ 𝑧 = 1) → 𝑅 = 𝑅)
17 1ex 11146 . . . . . 6 1 ∈ V
1817a1i 11 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 1 ∈ V)
19 simpl 482 . . . . 5 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → 𝑅𝑉)
2015, 16, 18, 19fvmptd 6957 . . . 4 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → ((𝑧 ∈ V ↦ 𝑅)‘1) = 𝑅)
2114, 20seq1i 13956 . . 3 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑅))‘1) = 𝑅)
229, 13, 213eqtrd 2768 . 2 ((𝑅𝑉 ∧ (𝑟 = 𝑅𝑛 = 1)) → if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)) = 𝑅)
23 elex 3465 . 2 (𝑅𝑉𝑅 ∈ V)
24 1nn0 12434 . . 3 1 ∈ ℕ0
2524a1i 11 . 2 (𝑅𝑉 → 1 ∈ ℕ0)
262, 22, 23, 25, 23ovmpod 7521 1 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cun 3909  ifcif 4484  cmpt 5183   I cid 5525  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  0cc0 11044  1c1 11045  0cn0 12418  seqcseq 13942  𝑟crelexp 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-relexp 14962
This theorem is referenced by:  dfid5  14969  dfid6  14970  relexp1d  14971  relexpsucnnl  14972  relexpsucl  14973  relexpsucr  14974  relexpcnv  14977  relexprelg  14980  relexpnndm  14983  relexpfld  14991  relexpaddnn  14993  relexpaddg  14995  dfrcl3  43637  relexp2  43639  iunrelexp0  43664  relexpxpnnidm  43665  corclrcl  43669  iunrelexpmin1  43670  trclrelexplem  43673  iunrelexpmin2  43674  relexp01min  43675  relexp0a  43678  relexpaddss  43680  dftrcl3  43682  cotrcltrcl  43687  trclimalb2  43688  trclfvdecomr  43690  dfrtrcl3  43695  corcltrcl  43701  cotrclrcl  43704
  Copyright terms: Public domain W3C validator