Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rest | Structured version Visualization version GIF version |
Description: Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
df-rest | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crest 17140 | . 2 class ↾t | |
2 | vj | . . 3 setvar 𝑗 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3433 | . . 3 class V | |
5 | vy | . . . . 5 setvar 𝑦 | |
6 | 2 | cv 1538 | . . . . 5 class 𝑗 |
7 | 5 | cv 1538 | . . . . . 6 class 𝑦 |
8 | 3 | cv 1538 | . . . . . 6 class 𝑥 |
9 | 7, 8 | cin 3887 | . . . . 5 class (𝑦 ∩ 𝑥) |
10 | 5, 6, 9 | cmpt 5158 | . . . 4 class (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) |
11 | 10 | crn 5591 | . . 3 class ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) |
12 | 2, 3, 4, 4, 11 | cmpo 7286 | . 2 class (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
13 | 1, 12 | wceq 1539 | 1 wff ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: restfn 17144 restval 17146 bj-restsnid 35267 |
Copyright terms: Public domain | W3C validator |