MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rest Structured version   Visualization version   GIF version

Definition df-rest 17050
Description: Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
df-rest t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
Distinct variable group:   𝑥,𝑗,𝑦

Detailed syntax breakdown of Definition df-rest
StepHypRef Expression
1 crest 17048 . 2 class t
2 vj . . 3 setvar 𝑗
3 vx . . 3 setvar 𝑥
4 cvv 3422 . . 3 class V
5 vy . . . . 5 setvar 𝑦
62cv 1538 . . . . 5 class 𝑗
75cv 1538 . . . . . 6 class 𝑦
83cv 1538 . . . . . 6 class 𝑥
97, 8cin 3882 . . . . 5 class (𝑦𝑥)
105, 6, 9cmpt 5153 . . . 4 class (𝑦𝑗 ↦ (𝑦𝑥))
1110crn 5581 . . 3 class ran (𝑦𝑗 ↦ (𝑦𝑥))
122, 3, 4, 4, 11cmpo 7257 . 2 class (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
131, 12wceq 1539 1 wff t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  restfn  17052  restval  17054  bj-restsnid  35185
  Copyright terms: Public domain W3C validator