| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rest | Structured version Visualization version GIF version | ||
| Description: Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| df-rest | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crest 17465 | . 2 class ↾t | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3480 | . . 3 class V | |
| 5 | vy | . . . . 5 setvar 𝑦 | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑗 |
| 7 | 5 | cv 1539 | . . . . . 6 class 𝑦 |
| 8 | 3 | cv 1539 | . . . . . 6 class 𝑥 |
| 9 | 7, 8 | cin 3950 | . . . . 5 class (𝑦 ∩ 𝑥) |
| 10 | 5, 6, 9 | cmpt 5225 | . . . 4 class (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) |
| 11 | 10 | crn 5686 | . . 3 class ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) |
| 12 | 2, 3, 4, 4, 11 | cmpo 7433 | . 2 class (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: restfn 17469 restval 17471 bj-restsnid 37088 |
| Copyright terms: Public domain | W3C validator |