Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-topn | Structured version Visualization version GIF version |
Description: Define the topology extractor function. This differs from df-tset 16990 when a structure has been restricted using df-ress 16951; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
df-topn | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctopn 17141 | . 2 class TopOpen | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3433 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . 5 class 𝑤 |
5 | cts 16977 | . . . . 5 class TopSet | |
6 | 4, 5 | cfv 6437 | . . . 4 class (TopSet‘𝑤) |
7 | cbs 16921 | . . . . 5 class Base | |
8 | 4, 7 | cfv 6437 | . . . 4 class (Base‘𝑤) |
9 | crest 17140 | . . . 4 class ↾t | |
10 | 6, 8, 9 | co 7284 | . . 3 class ((TopSet‘𝑤) ↾t (Base‘𝑤)) |
11 | 2, 3, 10 | cmpt 5158 | . 2 class (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
12 | 1, 11 | wceq 1539 | 1 wff TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
Colors of variables: wff setvar class |
This definition is referenced by: topnfn 17145 topnval 17154 |
Copyright terms: Public domain | W3C validator |