MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-topn Structured version   Visualization version   GIF version

Definition df-topn 17143
Description: Define the topology extractor function. This differs from df-tset 16990 when a structure has been restricted using df-ress 16951; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
df-topn TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))

Detailed syntax breakdown of Definition df-topn
StepHypRef Expression
1 ctopn 17141 . 2 class TopOpen
2 vw . . 3 setvar 𝑤
3 cvv 3433 . . 3 class V
42cv 1538 . . . . 5 class 𝑤
5 cts 16977 . . . . 5 class TopSet
64, 5cfv 6437 . . . 4 class (TopSet‘𝑤)
7 cbs 16921 . . . . 5 class Base
84, 7cfv 6437 . . . 4 class (Base‘𝑤)
9 crest 17140 . . . 4 class t
106, 8, 9co 7284 . . 3 class ((TopSet‘𝑤) ↾t (Base‘𝑤))
112, 3, 10cmpt 5158 . 2 class (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
121, 11wceq 1539 1 wff TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
Colors of variables: wff setvar class
This definition is referenced by:  topnfn  17145  topnval  17154
  Copyright terms: Public domain W3C validator