| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-topn | Structured version Visualization version GIF version | ||
| Description: Define the topology extractor function. This differs from df-tset 17288 when a structure has been restricted using df-ress 17250; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-topn | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctopn 17433 | . 2 class TopOpen | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3459 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 5 | cts 17275 | . . . . 5 class TopSet | |
| 6 | 4, 5 | cfv 6530 | . . . 4 class (TopSet‘𝑤) |
| 7 | cbs 17226 | . . . . 5 class Base | |
| 8 | 4, 7 | cfv 6530 | . . . 4 class (Base‘𝑤) |
| 9 | crest 17432 | . . . 4 class ↾t | |
| 10 | 6, 8, 9 | co 7403 | . . 3 class ((TopSet‘𝑤) ↾t (Base‘𝑤)) |
| 11 | 2, 3, 10 | cmpt 5201 | . 2 class (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
| 12 | 1, 11 | wceq 1540 | 1 wff TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: topnfn 17437 topnval 17446 |
| Copyright terms: Public domain | W3C validator |