MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfn Structured version   Visualization version   GIF version

Theorem restfn 17377
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn t Fn (V × V)

Proof of Theorem restfn
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 17375 . 2 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
2 vex 3472 . . . 4 𝑗 ∈ V
32mptex 7219 . . 3 (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
43rnex 7899 . 2 ran (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
51, 4fnmpoi 8052 1 t Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3468  cin 3942  cmpt 5224   × cxp 5667  ran crn 5670   Fn wfn 6531  t crest 17373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-rest 17375
This theorem is referenced by:  0rest  17382  restsspw  17384  firest  17385  restrcl  23012  restbas  23013  ssrest  23031  resstopn  23041
  Copyright terms: Public domain W3C validator