Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfn Structured version   Visualization version   GIF version

Theorem restfn 16757
 Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn t Fn (V × V)

Proof of Theorem restfn
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 16755 . 2 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
2 vex 3414 . . . 4 𝑗 ∈ V
32mptex 6978 . . 3 (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
43rnex 7623 . 2 ran (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
51, 4fnmpoi 7773 1 t Fn (V × V)
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3410   ∩ cin 3858   ↦ cmpt 5113   × cxp 5523  ran crn 5526   Fn wfn 6331   ↾t crest 16753 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-rest 16755 This theorem is referenced by:  0rest  16762  restsspw  16764  firest  16765  restrcl  21858  restbas  21859  ssrest  21877  resstopn  21887
 Copyright terms: Public domain W3C validator