MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfn Structured version   Visualization version   GIF version

Theorem restfn 17480
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn t Fn (V × V)

Proof of Theorem restfn
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 17478 . 2 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
2 vex 3485 . . . 4 𝑗 ∈ V
32mptex 7250 . . 3 (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
43rnex 7940 . 2 ran (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
51, 4fnmpoi 8103 1 t Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3481  cin 3965  cmpt 5234   × cxp 5691  ran crn 5694   Fn wfn 6564  t crest 17476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-rest 17478
This theorem is referenced by:  0rest  17485  restsspw  17487  firest  17488  restrcl  23190  restbas  23191  ssrest  23209  resstopn  23219
  Copyright terms: Public domain W3C validator