| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restfn | Structured version Visualization version GIF version | ||
| Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restfn | ⊢ ↾t Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rest 17326 | . 2 ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑗 ∈ V | |
| 3 | 2 | mptex 7157 | . . 3 ⊢ (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 4 | 3 | rnex 7840 | . 2 ⊢ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 5 | 1, 4 | fnmpoi 8002 | 1 ⊢ ↾t Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3901 ↦ cmpt 5172 × cxp 5614 ran crn 5617 Fn wfn 6476 ↾t crest 17324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-rest 17326 |
| This theorem is referenced by: 0rest 17333 restsspw 17335 firest 17336 restrcl 23073 restbas 23074 ssrest 23092 resstopn 23102 |
| Copyright terms: Public domain | W3C validator |