| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restfn | Structured version Visualization version GIF version | ||
| Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restfn | ⊢ ↾t Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rest 17392 | . 2 ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑗 ∈ V | |
| 3 | 2 | mptex 7200 | . . 3 ⊢ (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 4 | 3 | rnex 7889 | . 2 ⊢ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 5 | 1, 4 | fnmpoi 8052 | 1 ⊢ ↾t Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∩ cin 3916 ↦ cmpt 5191 × cxp 5639 ran crn 5642 Fn wfn 6509 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-rest 17392 |
| This theorem is referenced by: 0rest 17399 restsspw 17401 firest 17402 restrcl 23051 restbas 23052 ssrest 23070 resstopn 23080 |
| Copyright terms: Public domain | W3C validator |