| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version | ||
| Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37070 and bj-restsnss 37071. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | bj-restsnss 37071 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 4 | df-rest 17385 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
| 5 | 4 | reldmmpo 7523 | . . . 4 ⊢ Rel dom ↾t |
| 6 | 5 | ovprc2 7427 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
| 7 | snprc 4681 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 8 | 7 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 9 | 6, 8 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 10 | 3, 9 | pm2.61i 182 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 ↦ cmpt 5188 ran crn 5639 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |