| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version | ||
| Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37116 and bj-restsnss 37117. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | bj-restsnss 37117 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 4 | df-rest 17321 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
| 5 | 4 | reldmmpo 7475 | . . . 4 ⊢ Rel dom ↾t |
| 6 | 5 | ovprc2 7381 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
| 7 | snprc 4665 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 8 | 7 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 9 | 6, 8 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 10 | 3, 9 | pm2.61i 182 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 {csn 4571 ↦ cmpt 5167 ran crn 5612 (class class class)co 7341 ↾t crest 17319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |