Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnid Structured version   Visualization version   GIF version

Theorem bj-restsnid 37080
Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37075 and bj-restsnss 37076. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnid ({𝐴} ↾t 𝐴) = {𝐴}

Proof of Theorem bj-restsnid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3960 . . 3 𝐴𝐴
2 bj-restsnss 37076 . . 3 ((𝐴 ∈ V ∧ 𝐴𝐴) → ({𝐴} ↾t 𝐴) = {𝐴})
31, 2mpan2 691 . 2 (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴})
4 df-rest 17345 . . . . 5 t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧𝑥 ↦ (𝑧𝑦)))
54reldmmpo 7487 . . . 4 Rel dom ↾t
65ovprc2 7393 . . 3 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅)
7 snprc 4671 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
87biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
96, 8eqtr4d 2767 . 2 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴})
103, 9pm2.61i 182 1 ({𝐴} ↾t 𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  c0 4286  {csn 4579  cmpt 5176  ran crn 5624  (class class class)co 7353  t crest 17343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rest 17345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator