| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version | ||
| Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37199 and bj-restsnss 37200. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | bj-restsnss 37200 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 4 | df-rest 17333 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
| 5 | 4 | reldmmpo 7489 | . . . 4 ⊢ Rel dom ↾t |
| 6 | 5 | ovprc2 7395 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
| 7 | snprc 4671 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 8 | 7 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 9 | 6, 8 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
| 10 | 3, 9 | pm2.61i 182 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 ↦ cmpt 5176 ran crn 5622 (class class class)co 7355 ↾t crest 17331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rest 17333 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |