![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version |
Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 33985 and bj-restsnss 33986. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3912 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | bj-restsnss 33986 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
4 | df-rest 16525 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
5 | 4 | reldmmpo 7144 | . . . 4 ⊢ Rel dom ↾t |
6 | 5 | ovprc2 7058 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
7 | snprc 4562 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
8 | 7 | biimpi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
9 | 6, 8 | eqtr4d 2833 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
10 | 3, 9 | pm2.61i 183 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1522 ∈ wcel 2080 Vcvv 3436 ∩ cin 3860 ⊆ wss 3861 ∅c0 4213 {csn 4474 ↦ cmpt 5043 ran crn 5447 (class class class)co 7019 ↾t crest 16523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-rest 16525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |