![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnid | Structured version Visualization version GIF version |
Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37065 and bj-restsnss 37066. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnid | ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4018 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | bj-restsnss 37066 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴) → ({𝐴} ↾t 𝐴) = {𝐴}) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
4 | df-rest 17469 | . . . . 5 ⊢ ↾t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧 ∈ 𝑥 ↦ (𝑧 ∩ 𝑦))) | |
5 | 4 | reldmmpo 7567 | . . . 4 ⊢ Rel dom ↾t |
6 | 5 | ovprc2 7471 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅) |
7 | snprc 4722 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
8 | 7 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
9 | 6, 8 | eqtr4d 2778 | . 2 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴}) |
10 | 3, 9 | pm2.61i 182 | 1 ⊢ ({𝐴} ↾t 𝐴) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 ↦ cmpt 5231 ran crn 5690 (class class class)co 7431 ↾t crest 17467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |