MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restval Structured version   Visualization version   GIF version

Theorem restval 17368
Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restval ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem restval
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3492 . 2 (𝐴𝑊𝐴 ∈ V)
3 mptexg 7219 . . . . 5 (𝐽 ∈ V → (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
4 rnexg 7891 . . . . 5 ((𝑥𝐽 ↦ (𝑥𝐴)) ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
53, 4syl 17 . . . 4 (𝐽 ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
65adantr 481 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
7 simpl 483 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑗 = 𝐽)
8 simpr 485 . . . . . . 7 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑦 = 𝐴)
98ineq2d 4211 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑦) = (𝑥𝐴))
107, 9mpteq12dv 5238 . . . . 5 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑗 ↦ (𝑥𝑦)) = (𝑥𝐽 ↦ (𝑥𝐴)))
1110rneqd 5935 . . . 4 ((𝑗 = 𝐽𝑦 = 𝐴) → ran (𝑥𝑗 ↦ (𝑥𝑦)) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
12 df-rest 17364 . . . 4 t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥𝑗 ↦ (𝑥𝑦)))
1311, 12ovmpoga 7558 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
146, 13mpd3an3 1462 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
151, 2, 14syl2an 596 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cin 3946  cmpt 5230  ran crn 5676  (class class class)co 7405  t crest 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rest 17364
This theorem is referenced by:  elrest  17369  0rest  17371  restid2  17372  tgrest  22654  resttopon  22656  restco  22659  rest0  22664  restfpw  22674  neitr  22675  ordtrest2  22699  1stcrest  22948  2ndcrest  22949  kgencmp  23040  xkoptsub  23149  trfilss  23384  trfg  23386  uzrest  23392  restmetu  24070  ellimc2  25385  limcflf  25389  ordtrest2NEW  32891  ptrest  36475
  Copyright terms: Public domain W3C validator