MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restval Structured version   Visualization version   GIF version

Theorem restval 17396
Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restval ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem restval
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3471 . 2 (𝐴𝑊𝐴 ∈ V)
3 mptexg 7198 . . . . 5 (𝐽 ∈ V → (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
4 rnexg 7881 . . . . 5 ((𝑥𝐽 ↦ (𝑥𝐴)) ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
53, 4syl 17 . . . 4 (𝐽 ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
65adantr 480 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
7 simpl 482 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑗 = 𝐽)
8 simpr 484 . . . . . . 7 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑦 = 𝐴)
98ineq2d 4186 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑦) = (𝑥𝐴))
107, 9mpteq12dv 5197 . . . . 5 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑗 ↦ (𝑥𝑦)) = (𝑥𝐽 ↦ (𝑥𝐴)))
1110rneqd 5905 . . . 4 ((𝑗 = 𝐽𝑦 = 𝐴) → ran (𝑥𝑗 ↦ (𝑥𝑦)) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
12 df-rest 17392 . . . 4 t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥𝑗 ↦ (𝑥𝑦)))
1311, 12ovmpoga 7546 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
146, 13mpd3an3 1464 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
151, 2, 14syl2an 596 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  cmpt 5191  ran crn 5642  (class class class)co 7390  t crest 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rest 17392
This theorem is referenced by:  elrest  17397  0rest  17399  restid2  17400  tgrest  23053  resttopon  23055  restco  23058  rest0  23063  restfpw  23073  neitr  23074  ordtrest2  23098  1stcrest  23347  2ndcrest  23348  kgencmp  23439  xkoptsub  23548  trfilss  23783  trfg  23785  uzrest  23791  restmetu  24465  ellimc2  25785  limcflf  25789  ordtrest2NEW  33920  ptrest  37620
  Copyright terms: Public domain W3C validator