MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restval Structured version   Visualization version   GIF version

Theorem restval 17407
Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restval ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem restval
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3482 . 2 (𝐴𝑊𝐴 ∈ V)
3 mptexg 7231 . . . . 5 (𝐽 ∈ V → (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
4 rnexg 7908 . . . . 5 ((𝑥𝐽 ↦ (𝑥𝐴)) ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
53, 4syl 17 . . . 4 (𝐽 ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
65adantr 479 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
7 simpl 481 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑗 = 𝐽)
8 simpr 483 . . . . . . 7 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑦 = 𝐴)
98ineq2d 4211 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑦) = (𝑥𝐴))
107, 9mpteq12dv 5239 . . . . 5 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑗 ↦ (𝑥𝑦)) = (𝑥𝐽 ↦ (𝑥𝐴)))
1110rneqd 5939 . . . 4 ((𝑗 = 𝐽𝑦 = 𝐴) → ran (𝑥𝑗 ↦ (𝑥𝑦)) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
12 df-rest 17403 . . . 4 t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥𝑗 ↦ (𝑥𝑦)))
1311, 12ovmpoga 7573 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
146, 13mpd3an3 1458 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
151, 2, 14syl2an 594 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cin 3944  cmpt 5231  ran crn 5678  (class class class)co 7417  t crest 17401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-rest 17403
This theorem is referenced by:  elrest  17408  0rest  17410  restid2  17411  tgrest  23093  resttopon  23095  restco  23098  rest0  23103  restfpw  23113  neitr  23114  ordtrest2  23138  1stcrest  23387  2ndcrest  23388  kgencmp  23479  xkoptsub  23588  trfilss  23823  trfg  23825  uzrest  23831  restmetu  24509  ellimc2  25836  limcflf  25840  ordtrest2NEW  33594  ptrest  37162
  Copyright terms: Public domain W3C validator