MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restval Structured version   Visualization version   GIF version

Theorem restval 17389
Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restval ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem restval
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3468 . 2 (𝐴𝑊𝐴 ∈ V)
3 mptexg 7195 . . . . 5 (𝐽 ∈ V → (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
4 rnexg 7878 . . . . 5 ((𝑥𝐽 ↦ (𝑥𝐴)) ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
53, 4syl 17 . . . 4 (𝐽 ∈ V → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
65adantr 480 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V)
7 simpl 482 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑗 = 𝐽)
8 simpr 484 . . . . . . 7 ((𝑗 = 𝐽𝑦 = 𝐴) → 𝑦 = 𝐴)
98ineq2d 4183 . . . . . 6 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑦) = (𝑥𝐴))
107, 9mpteq12dv 5194 . . . . 5 ((𝑗 = 𝐽𝑦 = 𝐴) → (𝑥𝑗 ↦ (𝑥𝑦)) = (𝑥𝐽 ↦ (𝑥𝐴)))
1110rneqd 5902 . . . 4 ((𝑗 = 𝐽𝑦 = 𝐴) → ran (𝑥𝑗 ↦ (𝑥𝑦)) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
12 df-rest 17385 . . . 4 t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥𝑗 ↦ (𝑥𝑦)))
1311, 12ovmpoga 7543 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥𝐽 ↦ (𝑥𝐴)) ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
146, 13mpd3an3 1464 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
151, 2, 14syl2an 596 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  cmpt 5188  ran crn 5639  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  elrest  17390  0rest  17392  restid2  17393  tgrest  23046  resttopon  23048  restco  23051  rest0  23056  restfpw  23066  neitr  23067  ordtrest2  23091  1stcrest  23340  2ndcrest  23341  kgencmp  23432  xkoptsub  23541  trfilss  23776  trfg  23778  uzrest  23784  restmetu  24458  ellimc2  25778  limcflf  25782  ordtrest2NEW  33913  ptrest  37613
  Copyright terms: Public domain W3C validator