| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restval | Structured version Visualization version GIF version | ||
| Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restval | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐽 ∈ V) | |
| 2 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 3 | mptexg 7164 | . . . . 5 ⊢ (𝐽 ∈ V → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
| 4 | rnexg 7841 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐽 ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑗 = 𝐽) | |
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
| 9 | 8 | ineq2d 4171 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) |
| 10 | 7, 9 | mpteq12dv 5182 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 11 | 10 | rneqd 5885 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 12 | df-rest 17336 | . . . 4 ⊢ ↾t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦))) | |
| 13 | 11, 12 | ovmpoga 7509 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 14 | 6, 13 | mpd3an3 1464 | . 2 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 15 | 1, 2, 14 | syl2an 596 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∩ cin 3898 ↦ cmpt 5176 ran crn 5622 (class class class)co 7355 ↾t crest 17334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rest 17336 |
| This theorem is referenced by: elrest 17341 0rest 17343 restid2 17344 tgrest 23084 resttopon 23086 restco 23089 rest0 23094 restfpw 23104 neitr 23105 ordtrest2 23129 1stcrest 23378 2ndcrest 23379 kgencmp 23470 xkoptsub 23579 trfilss 23814 trfg 23816 uzrest 23822 restmetu 24495 ellimc2 25815 limcflf 25819 ordtrest2NEW 33947 ptrest 37669 |
| Copyright terms: Public domain | W3C validator |