| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restval | Structured version Visualization version GIF version | ||
| Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restval | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐽 ∈ V) | |
| 2 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 3 | mptexg 7161 | . . . . 5 ⊢ (𝐽 ∈ V → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
| 4 | rnexg 7842 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐽 ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑗 = 𝐽) | |
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
| 9 | 8 | ineq2d 4173 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) |
| 10 | 7, 9 | mpteq12dv 5182 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 11 | 10 | rneqd 5884 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 12 | df-rest 17344 | . . . 4 ⊢ ↾t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦))) | |
| 13 | 11, 12 | ovmpoga 7507 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 14 | 6, 13 | mpd3an3 1464 | . 2 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 15 | 1, 2, 14 | syl2an 596 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ↦ cmpt 5176 ran crn 5624 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: elrest 17349 0rest 17351 restid2 17352 tgrest 23062 resttopon 23064 restco 23067 rest0 23072 restfpw 23082 neitr 23083 ordtrest2 23107 1stcrest 23356 2ndcrest 23357 kgencmp 23448 xkoptsub 23557 trfilss 23792 trfg 23794 uzrest 23800 restmetu 24474 ellimc2 25794 limcflf 25798 ordtrest2NEW 33889 ptrest 37598 |
| Copyright terms: Public domain | W3C validator |