![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version |
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
2 | fveq2 6920 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
3 | 1, 2 | fveq12d 6927 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
4 | df-rgmod 21196 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
5 | fvex 6933 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
7 | 0fv 6964 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
8 | 7 | eqcomi 2749 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
9 | fvprc 6912 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
10 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
11 | 10 | fveq1d 6922 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
12 | 8, 9, 11 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 Basecbs 17258 subringAlg csra 21193 ringLModcrglmod 21194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-rgmod 21196 |
This theorem is referenced by: rlmval2 21222 rlmbas 21223 rlmplusg 21224 rlm0 21225 rlmmulr 21227 rlmsca 21228 rlmsca2 21229 rlmvsca 21230 rlmtopn 21231 rlmds 21232 rlmlmod 21233 frlmip 21821 rlmassa 21914 rlmnlm 24730 rlmbn 25414 rrxprds 25442 rlmdim 33622 rgmoddimOLD 33623 extdgid 33673 |
Copyright terms: Public domain | W3C validator |