MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 20459
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))

Proof of Theorem rlmval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6771 . . . 4 (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊))
2 fveq2 6771 . . . 4 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
31, 2fveq12d 6778 . . 3 (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
4 df-rgmod 20433 . . 3 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
5 fvex 6784 . . 3 ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V
63, 4, 5fvmpt 6872 . 2 (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
7 0fv 6810 . . . 4 (∅‘(Base‘𝑊)) = ∅
87eqcomi 2749 . . 3 ∅ = (∅‘(Base‘𝑊))
9 fvprc 6763 . . 3 𝑊 ∈ V → (ringLMod‘𝑊) = ∅)
10 fvprc 6763 . . . 4 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
1110fveq1d 6773 . . 3 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊)))
128, 9, 113eqtr4a 2806 . 2 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
136, 12pm2.61i 182 1 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  cfv 6432  Basecbs 16910  subringAlg csra 20428  ringLModcrglmod 20429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-rgmod 20433
This theorem is referenced by:  rlmval2  20462  rlmbas  20463  rlmplusg  20464  rlm0  20465  rlmmulr  20467  rlmsca  20468  rlmsca2  20469  rlmvsca  20470  rlmtopn  20471  rlmds  20472  rlmlmod  20473  frlmip  20983  rlmassa  21073  rlmnlm  23850  rlmbn  24523  rrxprds  24551  rgmoddim  31689  extdgid  31731
  Copyright terms: Public domain W3C validator