MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 21073
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))

Proof of Theorem rlmval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (π‘Ž = π‘Š β†’ (subringAlg β€˜π‘Ž) = (subringAlg β€˜π‘Š))
2 fveq2 6891 . . . 4 (π‘Ž = π‘Š β†’ (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Š))
31, 2fveq12d 6898 . . 3 (π‘Ž = π‘Š β†’ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
4 df-rgmod 21048 . . 3 ringLMod = (π‘Ž ∈ V ↦ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)))
5 fvex 6904 . . 3 ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) ∈ V
63, 4, 5fvmpt 6999 . 2 (π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
7 0fv 6935 . . . 4 (βˆ…β€˜(Baseβ€˜π‘Š)) = βˆ…
87eqcomi 2736 . . 3 βˆ… = (βˆ…β€˜(Baseβ€˜π‘Š))
9 fvprc 6883 . . 3 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = βˆ…)
10 fvprc 6883 . . . 4 (Β¬ π‘Š ∈ V β†’ (subringAlg β€˜π‘Š) = βˆ…)
1110fveq1d 6893 . . 3 (Β¬ π‘Š ∈ V β†’ ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) = (βˆ…β€˜(Baseβ€˜π‘Š)))
128, 9, 113eqtr4a 2793 . 2 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
136, 12pm2.61i 182 1 (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1534   ∈ wcel 2099  Vcvv 3469  βˆ…c0 4318  β€˜cfv 6542  Basecbs 17171  subringAlg csra 21045  ringLModcrglmod 21046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-rgmod 21048
This theorem is referenced by:  rlmval2  21074  rlmbas  21075  rlmplusg  21076  rlm0  21077  rlmmulr  21079  rlmsca  21080  rlmsca2  21081  rlmvsca  21082  rlmtopn  21083  rlmds  21084  rlmlmod  21085  frlmip  21699  rlmassa  21791  rlmnlm  24592  rlmbn  25276  rrxprds  25304  rlmdim  33239  rgmoddimOLD  33240  extdgid  33284
  Copyright terms: Public domain W3C validator