MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 20813
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))

Proof of Theorem rlmval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . 4 (π‘Ž = π‘Š β†’ (subringAlg β€˜π‘Ž) = (subringAlg β€˜π‘Š))
2 fveq2 6892 . . . 4 (π‘Ž = π‘Š β†’ (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Š))
31, 2fveq12d 6899 . . 3 (π‘Ž = π‘Š β†’ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
4 df-rgmod 20786 . . 3 ringLMod = (π‘Ž ∈ V ↦ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)))
5 fvex 6905 . . 3 ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) ∈ V
63, 4, 5fvmpt 6999 . 2 (π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
7 0fv 6936 . . . 4 (βˆ…β€˜(Baseβ€˜π‘Š)) = βˆ…
87eqcomi 2742 . . 3 βˆ… = (βˆ…β€˜(Baseβ€˜π‘Š))
9 fvprc 6884 . . 3 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = βˆ…)
10 fvprc 6884 . . . 4 (Β¬ π‘Š ∈ V β†’ (subringAlg β€˜π‘Š) = βˆ…)
1110fveq1d 6894 . . 3 (Β¬ π‘Š ∈ V β†’ ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) = (βˆ…β€˜(Baseβ€˜π‘Š)))
128, 9, 113eqtr4a 2799 . 2 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
136, 12pm2.61i 182 1 (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βˆ…c0 4323  β€˜cfv 6544  Basecbs 17144  subringAlg csra 20781  ringLModcrglmod 20782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-rgmod 20786
This theorem is referenced by:  rlmval2  20816  rlmbas  20817  rlmplusg  20818  rlm0  20819  rlmmulr  20821  rlmsca  20822  rlmsca2  20823  rlmvsca  20824  rlmtopn  20825  rlmds  20826  rlmlmod  20827  frlmip  21333  rlmassa  21425  rlmnlm  24205  rlmbn  24878  rrxprds  24906  rlmdim  32694  rgmoddimOLD  32695  extdgid  32739
  Copyright terms: Public domain W3C validator