MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 21105
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))

Proof of Theorem rlmval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊))
2 fveq2 6861 . . . 4 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
31, 2fveq12d 6868 . . 3 (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
4 df-rgmod 21088 . . 3 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
5 fvex 6874 . . 3 ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V
63, 4, 5fvmpt 6971 . 2 (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
7 0fv 6905 . . . 4 (∅‘(Base‘𝑊)) = ∅
87eqcomi 2739 . . 3 ∅ = (∅‘(Base‘𝑊))
9 fvprc 6853 . . 3 𝑊 ∈ V → (ringLMod‘𝑊) = ∅)
10 fvprc 6853 . . . 4 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
1110fveq1d 6863 . . 3 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊)))
128, 9, 113eqtr4a 2791 . 2 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
136, 12pm2.61i 182 1 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cfv 6514  Basecbs 17186  subringAlg csra 21085  ringLModcrglmod 21086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-rgmod 21088
This theorem is referenced by:  rlmval2  21106  rlmbas  21107  rlmplusg  21108  rlm0  21109  rlmmulr  21111  rlmsca  21112  rlmsca2  21113  rlmvsca  21114  rlmtopn  21115  rlmds  21116  rlmlmod  21117  frlmip  21694  rlmassa  21787  rlmnlm  24583  rlmbn  25268  rrxprds  25296  rlmdim  33612  rgmoddimOLD  33613  extdgid  33663
  Copyright terms: Public domain W3C validator