MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 21154
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))

Proof of Theorem rlmval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . 4 (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊))
2 fveq2 6881 . . . 4 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
31, 2fveq12d 6888 . . 3 (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
4 df-rgmod 21137 . . 3 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
5 fvex 6894 . . 3 ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V
63, 4, 5fvmpt 6991 . 2 (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
7 0fv 6925 . . . 4 (∅‘(Base‘𝑊)) = ∅
87eqcomi 2745 . . 3 ∅ = (∅‘(Base‘𝑊))
9 fvprc 6873 . . 3 𝑊 ∈ V → (ringLMod‘𝑊) = ∅)
10 fvprc 6873 . . . 4 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
1110fveq1d 6883 . . 3 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊)))
128, 9, 113eqtr4a 2797 . 2 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
136, 12pm2.61i 182 1 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536  Basecbs 17233  subringAlg csra 21134  ringLModcrglmod 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-rgmod 21137
This theorem is referenced by:  rlmval2  21155  rlmbas  21156  rlmplusg  21157  rlm0  21158  rlmmulr  21160  rlmsca  21161  rlmsca2  21162  rlmvsca  21163  rlmtopn  21164  rlmds  21165  rlmlmod  21166  frlmip  21743  rlmassa  21836  rlmnlm  24632  rlmbn  25318  rrxprds  25346  rlmdim  33654  rgmoddimOLD  33655  extdgid  33707
  Copyright terms: Public domain W3C validator