![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version |
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
rlmval | β’ (ringLModβπ) = ((subringAlg βπ)β(Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6894 | . . . 4 β’ (π = π β (subringAlg βπ) = (subringAlg βπ)) | |
2 | fveq2 6894 | . . . 4 β’ (π = π β (Baseβπ) = (Baseβπ)) | |
3 | 1, 2 | fveq12d 6901 | . . 3 β’ (π = π β ((subringAlg βπ)β(Baseβπ)) = ((subringAlg βπ)β(Baseβπ))) |
4 | df-rgmod 21063 | . . 3 β’ ringLMod = (π β V β¦ ((subringAlg βπ)β(Baseβπ))) | |
5 | fvex 6907 | . . 3 β’ ((subringAlg βπ)β(Baseβπ)) β V | |
6 | 3, 4, 5 | fvmpt 7002 | . 2 β’ (π β V β (ringLModβπ) = ((subringAlg βπ)β(Baseβπ))) |
7 | 0fv 6938 | . . . 4 β’ (β β(Baseβπ)) = β | |
8 | 7 | eqcomi 2734 | . . 3 β’ β = (β β(Baseβπ)) |
9 | fvprc 6886 | . . 3 β’ (Β¬ π β V β (ringLModβπ) = β ) | |
10 | fvprc 6886 | . . . 4 β’ (Β¬ π β V β (subringAlg βπ) = β ) | |
11 | 10 | fveq1d 6896 | . . 3 β’ (Β¬ π β V β ((subringAlg βπ)β(Baseβπ)) = (β β(Baseβπ))) |
12 | 8, 9, 11 | 3eqtr4a 2791 | . 2 β’ (Β¬ π β V β (ringLModβπ) = ((subringAlg βπ)β(Baseβπ))) |
13 | 6, 12 | pm2.61i 182 | 1 β’ (ringLModβπ) = ((subringAlg βπ)β(Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1533 β wcel 2098 Vcvv 3463 β c0 4323 βcfv 6547 Basecbs 17179 subringAlg csra 21060 ringLModcrglmod 21061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-rgmod 21063 |
This theorem is referenced by: rlmval2 21089 rlmbas 21090 rlmplusg 21091 rlm0 21092 rlmmulr 21094 rlmsca 21095 rlmsca2 21096 rlmvsca 21097 rlmtopn 21098 rlmds 21099 rlmlmod 21100 frlmip 21716 rlmassa 21808 rlmnlm 24635 rlmbn 25319 rrxprds 25347 rlmdim 33377 rgmoddimOLD 33378 extdgid 33422 |
Copyright terms: Public domain | W3C validator |