| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version | ||
| Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
| 3 | 1, 2 | fveq12d 6888 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 4 | df-rgmod 21137 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
| 5 | fvex 6894 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6991 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 7 | 0fv 6925 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
| 8 | 7 | eqcomi 2745 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
| 9 | fvprc 6873 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
| 10 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
| 11 | 10 | fveq1d 6883 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
| 12 | 8, 9, 11 | 3eqtr4a 2797 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 Basecbs 17233 subringAlg csra 21134 ringLModcrglmod 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-rgmod 21137 |
| This theorem is referenced by: rlmval2 21155 rlmbas 21156 rlmplusg 21157 rlm0 21158 rlmmulr 21160 rlmsca 21161 rlmsca2 21162 rlmvsca 21163 rlmtopn 21164 rlmds 21165 rlmlmod 21166 frlmip 21743 rlmassa 21836 rlmnlm 24632 rlmbn 25318 rrxprds 25346 rlmdim 33654 rgmoddimOLD 33655 extdgid 33707 |
| Copyright terms: Public domain | W3C validator |