MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 21113
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))

Proof of Theorem rlmval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊))
2 fveq2 6826 . . . 4 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
31, 2fveq12d 6833 . . 3 (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
4 df-rgmod 21096 . . 3 ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎)))
5 fvex 6839 . . 3 ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V
63, 4, 5fvmpt 6934 . 2 (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
7 0fv 6868 . . . 4 (∅‘(Base‘𝑊)) = ∅
87eqcomi 2738 . . 3 ∅ = (∅‘(Base‘𝑊))
9 fvprc 6818 . . 3 𝑊 ∈ V → (ringLMod‘𝑊) = ∅)
10 fvprc 6818 . . . 4 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
1110fveq1d 6828 . . 3 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊)))
128, 9, 113eqtr4a 2790 . 2 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
136, 12pm2.61i 182 1 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  cfv 6486  Basecbs 17138  subringAlg csra 21093  ringLModcrglmod 21094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-rgmod 21096
This theorem is referenced by:  rlmval2  21114  rlmbas  21115  rlmplusg  21116  rlm0  21117  rlmmulr  21119  rlmsca  21120  rlmsca2  21121  rlmvsca  21122  rlmtopn  21123  rlmds  21124  rlmlmod  21125  frlmip  21703  rlmassa  21796  rlmnlm  24592  rlmbn  25277  rrxprds  25305  rlmdim  33581  rgmoddimOLD  33582  extdgid  33632
  Copyright terms: Public domain W3C validator