| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version | ||
| Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
| 2 | fveq2 6826 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
| 3 | 1, 2 | fveq12d 6833 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 4 | df-rgmod 21096 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
| 5 | fvex 6839 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6934 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 7 | 0fv 6868 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
| 8 | 7 | eqcomi 2738 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
| 9 | fvprc 6818 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
| 10 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
| 11 | 10 | fveq1d 6828 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
| 12 | 8, 9, 11 | 3eqtr4a 2790 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ‘cfv 6486 Basecbs 17138 subringAlg csra 21093 ringLModcrglmod 21094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-rgmod 21096 |
| This theorem is referenced by: rlmval2 21114 rlmbas 21115 rlmplusg 21116 rlm0 21117 rlmmulr 21119 rlmsca 21120 rlmsca2 21121 rlmvsca 21122 rlmtopn 21123 rlmds 21124 rlmlmod 21125 frlmip 21703 rlmassa 21796 rlmnlm 24592 rlmbn 25277 rrxprds 25305 rlmdim 33581 rgmoddimOLD 33582 extdgid 33632 |
| Copyright terms: Public domain | W3C validator |