MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval Structured version   Visualization version   GIF version

Theorem rlmval 21088
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmval (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))

Proof of Theorem rlmval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveq2 6894 . . . 4 (π‘Ž = π‘Š β†’ (subringAlg β€˜π‘Ž) = (subringAlg β€˜π‘Š))
2 fveq2 6894 . . . 4 (π‘Ž = π‘Š β†’ (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Š))
31, 2fveq12d 6901 . . 3 (π‘Ž = π‘Š β†’ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
4 df-rgmod 21063 . . 3 ringLMod = (π‘Ž ∈ V ↦ ((subringAlg β€˜π‘Ž)β€˜(Baseβ€˜π‘Ž)))
5 fvex 6907 . . 3 ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) ∈ V
63, 4, 5fvmpt 7002 . 2 (π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
7 0fv 6938 . . . 4 (βˆ…β€˜(Baseβ€˜π‘Š)) = βˆ…
87eqcomi 2734 . . 3 βˆ… = (βˆ…β€˜(Baseβ€˜π‘Š))
9 fvprc 6886 . . 3 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = βˆ…)
10 fvprc 6886 . . . 4 (Β¬ π‘Š ∈ V β†’ (subringAlg β€˜π‘Š) = βˆ…)
1110fveq1d 6896 . . 3 (Β¬ π‘Š ∈ V β†’ ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) = (βˆ…β€˜(Baseβ€˜π‘Š)))
128, 9, 113eqtr4a 2791 . 2 (Β¬ π‘Š ∈ V β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
136, 12pm2.61i 182 1 (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1533   ∈ wcel 2098  Vcvv 3463  βˆ…c0 4323  β€˜cfv 6547  Basecbs 17179  subringAlg csra 21060  ringLModcrglmod 21061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-rgmod 21063
This theorem is referenced by:  rlmval2  21089  rlmbas  21090  rlmplusg  21091  rlm0  21092  rlmmulr  21094  rlmsca  21095  rlmsca2  21096  rlmvsca  21097  rlmtopn  21098  rlmds  21099  rlmlmod  21100  frlmip  21716  rlmassa  21808  rlmnlm  24635  rlmbn  25319  rrxprds  25347  rlmdim  33377  rgmoddimOLD  33378  extdgid  33422
  Copyright terms: Public domain W3C validator