Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version |
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6771 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
2 | fveq2 6771 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
3 | 1, 2 | fveq12d 6778 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
4 | df-rgmod 20433 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
5 | fvex 6784 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6872 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
7 | 0fv 6810 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
8 | 7 | eqcomi 2749 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
9 | fvprc 6763 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
10 | fvprc 6763 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
11 | 10 | fveq1d 6773 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
12 | 8, 9, 11 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 ‘cfv 6432 Basecbs 16910 subringAlg csra 20428 ringLModcrglmod 20429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-rgmod 20433 |
This theorem is referenced by: rlmval2 20462 rlmbas 20463 rlmplusg 20464 rlm0 20465 rlmmulr 20467 rlmsca 20468 rlmsca2 20469 rlmvsca 20470 rlmtopn 20471 rlmds 20472 rlmlmod 20473 frlmip 20983 rlmassa 21073 rlmnlm 23850 rlmbn 24523 rrxprds 24551 rgmoddim 31689 extdgid 31731 |
Copyright terms: Public domain | W3C validator |