Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlmval | Structured version Visualization version GIF version |
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
rlmval | ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑎 = 𝑊 → (subringAlg ‘𝑎) = (subringAlg ‘𝑊)) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
3 | 1, 2 | fveq12d 6763 | . . 3 ⊢ (𝑎 = 𝑊 → ((subringAlg ‘𝑎)‘(Base‘𝑎)) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
4 | df-rgmod 20350 | . . 3 ⊢ ringLMod = (𝑎 ∈ V ↦ ((subringAlg ‘𝑎)‘(Base‘𝑎))) | |
5 | fvex 6769 | . . 3 ⊢ ((subringAlg ‘𝑊)‘(Base‘𝑊)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6857 | . 2 ⊢ (𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
7 | 0fv 6795 | . . . 4 ⊢ (∅‘(Base‘𝑊)) = ∅ | |
8 | 7 | eqcomi 2747 | . . 3 ⊢ ∅ = (∅‘(Base‘𝑊)) |
9 | fvprc 6748 | . . 3 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ∅) | |
10 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
11 | 10 | fveq1d 6758 | . . 3 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (∅‘(Base‘𝑊))) |
12 | 8, 9, 11 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝑊 ∈ V → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
13 | 6, 12 | pm2.61i 182 | 1 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 Basecbs 16840 subringAlg csra 20345 ringLModcrglmod 20346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-rgmod 20350 |
This theorem is referenced by: rlmval2 20377 rlmbas 20378 rlmplusg 20379 rlm0 20380 rlmmulr 20382 rlmsca 20383 rlmsca2 20384 rlmvsca 20385 rlmtopn 20386 rlmds 20387 rlmlmod 20388 frlmip 20895 rlmassa 20985 rlmnlm 23758 rlmbn 24430 rrxprds 24458 rgmoddim 31595 extdgid 31637 |
Copyright terms: Public domain | W3C validator |