Detailed syntax breakdown of Definition df-risc
| Step | Hyp | Ref
| Expression |
| 1 | | crisc 37969 |
. 2
class
≃𝑟 |
| 2 | | vr |
. . . . . . 7
setvar 𝑟 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑟 |
| 4 | | crngo 37901 |
. . . . . 6
class
RingOps |
| 5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑟 ∈ RingOps |
| 6 | | vs |
. . . . . . 7
setvar 𝑠 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑠 |
| 8 | 7, 4 | wcel 2108 |
. . . . 5
wff 𝑠 ∈ RingOps |
| 9 | 5, 8 | wa 395 |
. . . 4
wff (𝑟 ∈ RingOps ∧ 𝑠 ∈
RingOps) |
| 10 | | vf |
. . . . . . 7
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 12 | | crngoiso 37968 |
. . . . . . 7
class
RingOpsIso |
| 13 | 3, 7, 12 | co 7431 |
. . . . . 6
class (𝑟 RingOpsIso 𝑠) |
| 14 | 11, 13 | wcel 2108 |
. . . . 5
wff 𝑓 ∈ (𝑟 RingOpsIso 𝑠) |
| 15 | 14, 10 | wex 1779 |
. . . 4
wff
∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) |
| 16 | 9, 15 | wa 395 |
. . 3
wff ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧
∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) |
| 17 | 16, 2, 6 | copab 5205 |
. 2
class
{〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧
∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} |
| 18 | 1, 17 | wceq 1540 |
1
wff
≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} |