Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 35371
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 35366 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
21relopabi 5681 . 2 Rel ≃𝑟
3 eqid 2824 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3483 . . . . . . 7 𝑟 ∈ V
5 vex 3483 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 35368 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)))
7 rngoisocnv 35364 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑓 ∈ (𝑠 RngIso 𝑟))
873expia 1118 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑓 ∈ (𝑠 RngIso 𝑟)))
9 risci 35370 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RngIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1118 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 462 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1935 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 410 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 220 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3483 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 35368 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
18 exdistrv 1957 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
19 rngoisoco 35365 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡))
2019ex 416 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)))
21 risci 35370 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1118 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1128 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1936 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25syl5bir 246 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1117 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 714 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 410 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 659 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 600 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 474 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1797 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1798 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8286 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1338 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2115   class class class wbr 5052  ccnv 5541  dom cdm 5542  ccom 5546  Rel wrel 5547  (class class class)co 7149   Er wer 8282  RingOpscrngo 35277   RngIso crngiso 35344  𝑟 crisc 35345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-er 8285  df-map 8404  df-grpo 28279  df-gid 28280  df-ablo 28331  df-ass 35226  df-exid 35228  df-mgmOLD 35232  df-sgrOLD 35244  df-mndo 35250  df-rngo 35278  df-rngohom 35346  df-rngoiso 35359  df-risc 35366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator