Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 36437
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 36432 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
21relopabiv 5776 . 2 Rel ≃𝑟
3 eqid 2736 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3449 . . . . . . 7 𝑟 ∈ V
5 vex 3449 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 36434 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)))
7 rngoisocnv 36430 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑓 ∈ (𝑠 RngIso 𝑟))
873expia 1121 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑓 ∈ (𝑠 RngIso 𝑟)))
9 risci 36436 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RngIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1121 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 459 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1936 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 407 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 216 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3449 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 36434 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
18 exdistrv 1959 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
19 rngoisoco 36431 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡))
2019ex 413 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)))
21 risci 36436 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1121 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1131 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1937 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25biimtrrid 242 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1120 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 713 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 407 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 658 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 598 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 471 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1797 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1798 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8648 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1341 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106   class class class wbr 5105  ccnv 5632  dom cdm 5633  ccom 5637  Rel wrel 5638  (class class class)co 7356   Er wer 8644  RingOpscrngo 36343   RngIso crngiso 36410  𝑟 crisc 36411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-1st 7920  df-2nd 7921  df-er 8647  df-map 8766  df-grpo 29382  df-gid 29383  df-ablo 29434  df-ass 36292  df-exid 36294  df-mgmOLD 36298  df-sgrOLD 36310  df-mndo 36316  df-rngo 36344  df-rngohom 36412  df-rngoiso 36425  df-risc 36432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator