Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 38038
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 38033 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
21relopabiv 5759 . 2 Rel ≃𝑟
3 eqid 2731 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3440 . . . . . . 7 𝑟 ∈ V
5 vex 3440 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 38035 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)))
7 rngoisocnv 38031 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟))
873expia 1121 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟)))
9 risci 38037 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RingOpsIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1121 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 458 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1934 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 406 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 217 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3440 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 38035 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
18 exdistrv 1956 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
19 rngoisoco 38032 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡))
2019ex 412 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)))
21 risci 38037 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1121 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1131 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1935 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25biimtrrid 243 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1120 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 715 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 406 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 660 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 598 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 470 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1796 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1797 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8623 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1342 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5089  ccnv 5613  dom cdm 5614  ccom 5618  Rel wrel 5619  (class class class)co 7346   Er wer 8619  RingOpscrngo 37944   RingOpsIso crngoiso 38011  𝑟 crisc 38012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-grpo 30473  df-gid 30474  df-ablo 30525  df-ass 37893  df-exid 37895  df-mgmOLD 37899  df-sgrOLD 37911  df-mndo 37917  df-rngo 37945  df-rngohom 38013  df-rngoiso 38026  df-risc 38033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator