Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 38017
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 38012 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
21relopabiv 5804 . 2 Rel ≃𝑟
3 eqid 2736 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3468 . . . . . . 7 𝑟 ∈ V
5 vex 3468 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 38014 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)))
7 rngoisocnv 38010 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟))
873expia 1121 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟)))
9 risci 38016 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RingOpsIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1121 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 458 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1933 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 406 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 217 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3468 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 38014 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
18 exdistrv 1955 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
19 rngoisoco 38011 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡))
2019ex 412 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)))
21 risci 38016 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1121 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1131 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1934 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25biimtrrid 243 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1120 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 715 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 406 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 660 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 598 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 470 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1795 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1796 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8725 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1342 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5124  ccnv 5658  dom cdm 5659  ccom 5663  Rel wrel 5664  (class class class)co 7410   Er wer 8721  RingOpscrngo 37923   RingOpsIso crngoiso 37990  𝑟 crisc 37991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-map 8847  df-grpo 30479  df-gid 30480  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-rngohom 37992  df-rngoiso 38005  df-risc 38012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator