Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 37982
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 37977 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
21relopabiv 5783 . 2 Rel ≃𝑟
3 eqid 2729 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3451 . . . . . . 7 𝑟 ∈ V
5 vex 3451 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 37979 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)))
7 rngoisocnv 37975 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟))
873expia 1121 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑓 ∈ (𝑠 RingOpsIso 𝑟)))
9 risci 37981 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RingOpsIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1121 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 458 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RingOpsIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1933 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 406 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 217 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3451 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 37979 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
18 exdistrv 1955 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)))
19 rngoisoco 37976 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡))
2019ex 412 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)))
21 risci 37981 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1121 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1131 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RingOpsIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1934 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25biimtrrid 243 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1120 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 715 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 406 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 660 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RingOpsIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 598 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 470 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1795 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1796 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8672 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1342 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5107  ccnv 5637  dom cdm 5638  ccom 5642  Rel wrel 5643  (class class class)co 7387   Er wer 8668  RingOpscrngo 37888   RingOpsIso crngoiso 37955  𝑟 crisc 37956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-grpo 30422  df-gid 30423  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889  df-rngohom 37957  df-rngoiso 37970  df-risc 37977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator