Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Visualization version   GIF version

Theorem riscer 35426
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer 𝑟 Er dom ≃𝑟

Proof of Theorem riscer
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 35421 . . 3 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
21relopabi 5658 . 2 Rel ≃𝑟
3 eqid 2798 . 2 dom ≃𝑟 = dom ≃𝑟
4 vex 3444 . . . . . . 7 𝑟 ∈ V
5 vex 3444 . . . . . . 7 𝑠 ∈ V
64, 5isrisc 35423 . . . . . 6 (𝑟𝑟 𝑠 ↔ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)))
7 rngoisocnv 35419 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑓 ∈ (𝑠 RngIso 𝑟))
873expia 1118 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑓 ∈ (𝑠 RngIso 𝑟)))
9 risci 35425 . . . . . . . . . . 11 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ 𝑓 ∈ (𝑠 RngIso 𝑟)) → 𝑠𝑟 𝑟)
1093expia 1118 . . . . . . . . . 10 ((𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
1110ancoms 462 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑠 RngIso 𝑟) → 𝑠𝑟 𝑟))
128, 11syld 47 . . . . . . . 8 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1312exlimdv 1934 . . . . . . 7 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) → 𝑠𝑟 𝑟))
1413imp 410 . . . . . 6 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) → 𝑠𝑟 𝑟)
156, 14sylbi 220 . . . . 5 (𝑟𝑟 𝑠𝑠𝑟 𝑟)
16 vex 3444 . . . . . . 7 𝑡 ∈ V
175, 16isrisc 35423 . . . . . 6 (𝑠𝑟 𝑡 ↔ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
18 exdistrv 1956 . . . . . . . . . . 11 (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) ↔ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)))
19 rngoisoco 35420 . . . . . . . . . . . . . 14 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ (𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡))) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡))
2019ex 416 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)))
21 risci 35425 . . . . . . . . . . . . . . 15 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ (𝑔𝑓) ∈ (𝑟 RngIso 𝑡)) → 𝑟𝑟 𝑡)
22213expia 1118 . . . . . . . . . . . . . 14 ((𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
23223adant2 1128 . . . . . . . . . . . . 13 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑔𝑓) ∈ (𝑟 RngIso 𝑡) → 𝑟𝑟 𝑡))
2420, 23syld 47 . . . . . . . . . . . 12 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2524exlimdvv 1935 . . . . . . . . . . 11 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → (∃𝑓𝑔(𝑓 ∈ (𝑟 RngIso 𝑠) ∧ 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2618, 25syl5bir 246 . . . . . . . . . 10 ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
27263expb 1117 . . . . . . . . 9 ((𝑟 ∈ RingOps ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2827adantlr 714 . . . . . . . 8 (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) → ((∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡)) → 𝑟𝑟 𝑡))
2928imp 410 . . . . . . 7 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ (𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps)) ∧ (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
3029an4s 659 . . . . . 6 ((((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ∧ ((𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps) ∧ ∃𝑔 𝑔 ∈ (𝑠 RngIso 𝑡))) → 𝑟𝑟 𝑡)
316, 17, 30syl2anb 600 . . . . 5 ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡)
3215, 31pm3.2i 474 . . . 4 ((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3332ax-gen 1797 . . 3 𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
3433gen2 1798 . 2 𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))
35 dfer2 8273 . 2 ( ≃𝑟 Er dom ≃𝑟 ↔ (Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀𝑟𝑠𝑡((𝑟𝑟 𝑠𝑠𝑟 𝑟) ∧ ((𝑟𝑟 𝑠𝑠𝑟 𝑡) → 𝑟𝑟 𝑡))))
362, 3, 34, 35mpbir3an 1338 1 𝑟 Er dom ≃𝑟
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111   class class class wbr 5030  ccnv 5518  dom cdm 5519  ccom 5523  Rel wrel 5524  (class class class)co 7135   Er wer 8269  RingOpscrngo 35332   RngIso crngiso 35399  𝑟 crisc 35400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-grpo 28276  df-gid 28277  df-ablo 28328  df-ass 35281  df-exid 35283  df-mgmOLD 35287  df-sgrOLD 35299  df-mndo 35305  df-rngo 35333  df-rngohom 35401  df-rngoiso 35414  df-risc 35421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator