Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   GIF version

Theorem rngoisoco 38011
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇))

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 38009 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
213expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
323adantl3 1169 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
4 rngoisohom 38009 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
543expa 1118 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
653adantl1 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
73, 6anim12dan 619 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)))
8 rngohomco 38003 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
97, 8syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
10 eqid 2736 . . . . . . 7 (1st𝑆) = (1st𝑆)
11 eqid 2736 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
12 eqid 2736 . . . . . . 7 (1st𝑇) = (1st𝑇)
13 eqid 2736 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
1410, 11, 12, 13rngoiso1o 38008 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
15143expa 1118 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
16153adantl1 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
1716adantrl 716 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
18 eqid 2736 . . . . . . 7 (1st𝑅) = (1st𝑅)
19 eqid 2736 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
2018, 19, 10, 11rngoiso1o 38008 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
21203expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
22213adantl3 1169 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
2322adantrr 717 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
24 f1oco 6846 . . 3 ((𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2517, 23, 24syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2618, 19, 12, 13isrngoiso 38007 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
27263adant2 1131 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
2827adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
299, 25, 28mpbir2and 713 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  ran crn 5660  ccom 5663  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  RingOpscrngo 37923   RingOpsHom crngohom 37989   RingOpsIso crngoiso 37990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-grpo 30479  df-gid 30480  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-rngohom 37992  df-rngoiso 38005
This theorem is referenced by:  riscer  38017
  Copyright terms: Public domain W3C validator