Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   GIF version

Theorem rngoisoco 37969
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇))

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 37967 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
213expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
323adantl3 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
4 rngoisohom 37967 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
543expa 1117 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
653adantl1 1165 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺 ∈ (𝑆 RingOpsHom 𝑇))
73, 6anim12dan 619 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇)))
8 rngohomco 37961 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
97, 8syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇))
10 eqid 2735 . . . . . . 7 (1st𝑆) = (1st𝑆)
11 eqid 2735 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
12 eqid 2735 . . . . . . 7 (1st𝑇) = (1st𝑇)
13 eqid 2735 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
1410, 11, 12, 13rngoiso1o 37966 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
15143expa 1117 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
16153adantl1 1165 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
1716adantrl 716 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
18 eqid 2735 . . . . . . 7 (1st𝑅) = (1st𝑅)
19 eqid 2735 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
2018, 19, 10, 11rngoiso1o 37966 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
21203expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
22213adantl3 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
2322adantrr 717 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
24 f1oco 6872 . . 3 ((𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2517, 23, 24syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2618, 19, 12, 13isrngoiso 37965 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
27263adant2 1130 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
2827adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RingOpsHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
299, 25, 28mpbir2and 713 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RingOpsIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  ran crn 5690  ccom 5693  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  1st c1st 8011  RingOpscrngo 37881   RingOpsHom crngohom 37947   RingOpsIso crngoiso 37948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-grpo 30522  df-gid 30523  df-ablo 30574  df-ass 37830  df-exid 37832  df-mgmOLD 37836  df-sgrOLD 37848  df-mndo 37854  df-rngo 37882  df-rngohom 37950  df-rngoiso 37963
This theorem is referenced by:  riscer  37975
  Copyright terms: Public domain W3C validator