Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   GIF version

Theorem rngoisoco 36140
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 36138 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
213expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
323adantl3 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
4 rngoisohom 36138 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
543expa 1117 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
653adantl1 1165 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
73, 6anim12dan 619 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)))
8 rngohomco 36132 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
97, 8syldan 591 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
10 eqid 2738 . . . . . . 7 (1st𝑆) = (1st𝑆)
11 eqid 2738 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
12 eqid 2738 . . . . . . 7 (1st𝑇) = (1st𝑇)
13 eqid 2738 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
1410, 11, 12, 13rngoiso1o 36137 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
15143expa 1117 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
16153adantl1 1165 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
1716adantrl 713 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
18 eqid 2738 . . . . . . 7 (1st𝑅) = (1st𝑅)
19 eqid 2738 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
2018, 19, 10, 11rngoiso1o 36137 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
21203expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
22213adantl3 1167 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
2322adantrr 714 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
24 f1oco 6739 . . 3 ((𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2517, 23, 24syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2618, 19, 12, 13isrngoiso 36136 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
27263adant2 1130 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
2827adantr 481 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
299, 25, 28mpbir2and 710 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  ran crn 5590  ccom 5593  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  RingOpscrngo 36052   RngHom crnghom 36118   RngIso crngiso 36119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-grpo 28855  df-gid 28856  df-ablo 28907  df-ass 36001  df-exid 36003  df-mgmOLD 36007  df-sgrOLD 36019  df-mndo 36025  df-rngo 36053  df-rngohom 36121  df-rngoiso 36134
This theorem is referenced by:  riscer  36146
  Copyright terms: Public domain W3C validator