Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Visualization version   GIF version

Theorem rngoisoco 36067
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 36065 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
213expa 1116 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
323adantl3 1166 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆))
4 rngoisohom 36065 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
543expa 1116 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
653adantl1 1164 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇))
73, 6anim12dan 618 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)))
8 rngohomco 36059 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
97, 8syldan 590 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
10 eqid 2738 . . . . . . 7 (1st𝑆) = (1st𝑆)
11 eqid 2738 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
12 eqid 2738 . . . . . . 7 (1st𝑇) = (1st𝑇)
13 eqid 2738 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
1410, 11, 12, 13rngoiso1o 36064 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
15143expa 1116 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
16153adantl1 1164 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
1716adantrl 712 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇))
18 eqid 2738 . . . . . . 7 (1st𝑅) = (1st𝑅)
19 eqid 2738 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
2018, 19, 10, 11rngoiso1o 36064 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
21203expa 1116 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
22213adantl3 1166 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
2322adantrr 713 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))
24 f1oco 6722 . . 3 ((𝐺:ran (1st𝑆)–1-1-onto→ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2517, 23, 24syl2anc 583 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))
2618, 19, 12, 13isrngoiso 36063 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
27263adant2 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
2827adantr 480 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺𝐹):ran (1st𝑅)–1-1-onto→ran (1st𝑇))))
299, 25, 28mpbir2and 709 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  ran crn 5581  ccom 5584  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  RingOpscrngo 35979   RngHom crnghom 36045   RngIso crngiso 36046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-grpo 28756  df-gid 28757  df-ablo 28808  df-ass 35928  df-exid 35930  df-mgmOLD 35934  df-sgrOLD 35946  df-mndo 35952  df-rngo 35980  df-rngohom 36048  df-rngoiso 36061
This theorem is referenced by:  riscer  36073
  Copyright terms: Public domain W3C validator