Proof of Theorem rngoisoco
Step | Hyp | Ref
| Expression |
1 | | rngoisohom 36065 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
2 | 1 | 3expa 1116 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
3 | 2 | 3adantl3 1166 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
4 | | rngoisohom 36065 |
. . . . . 6
⊢ ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇)) |
5 | 4 | 3expa 1116 |
. . . . 5
⊢ (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇)) |
6 | 5 | 3adantl1 1164 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺 ∈ (𝑆 RngHom 𝑇)) |
7 | 3, 6 | anim12dan 618 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) |
8 | | rngohomco 36059 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇)) |
9 | 7, 8 | syldan 590 |
. 2
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇)) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(1st ‘𝑆) = (1st ‘𝑆) |
11 | | eqid 2738 |
. . . . . . 7
⊢ ran
(1st ‘𝑆) =
ran (1st ‘𝑆) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(1st ‘𝑇) = (1st ‘𝑇) |
13 | | eqid 2738 |
. . . . . . 7
⊢ ran
(1st ‘𝑇) =
ran (1st ‘𝑇) |
14 | 10, 11, 12, 13 | rngoiso1o 36064 |
. . . . . 6
⊢ ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st ‘𝑆)–1-1-onto→ran
(1st ‘𝑇)) |
15 | 14 | 3expa 1116 |
. . . . 5
⊢ (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st ‘𝑆)–1-1-onto→ran
(1st ‘𝑇)) |
16 | 15 | 3adantl1 1164 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇)) → 𝐺:ran (1st ‘𝑆)–1-1-onto→ran
(1st ‘𝑇)) |
17 | 16 | adantrl 712 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐺:ran (1st ‘𝑆)–1-1-onto→ran
(1st ‘𝑇)) |
18 | | eqid 2738 |
. . . . . . 7
⊢
(1st ‘𝑅) = (1st ‘𝑅) |
19 | | eqid 2738 |
. . . . . . 7
⊢ ran
(1st ‘𝑅) =
ran (1st ‘𝑅) |
20 | 18, 19, 10, 11 | rngoiso1o 36064 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑆)) |
21 | 20 | 3expa 1116 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑆)) |
22 | 21 | 3adantl3 1166 |
. . . 4
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑆)) |
23 | 22 | adantrr 713 |
. . 3
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → 𝐹:ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑆)) |
24 | | f1oco 6722 |
. . 3
⊢ ((𝐺:ran (1st
‘𝑆)–1-1-onto→ran (1st ‘𝑇) ∧ 𝐹:ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑆))
→ (𝐺 ∘ 𝐹):ran (1st
‘𝑅)–1-1-onto→ran (1st ‘𝑇)) |
25 | 17, 23, 24 | syl2anc 583 |
. 2
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺 ∘ 𝐹):ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑇)) |
26 | 18, 19, 12, 13 | isrngoiso 36063 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺 ∘ 𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺 ∘ 𝐹):ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑇)))) |
27 | 26 | 3adant2 1129 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺 ∘ 𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺 ∘ 𝐹):ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑇)))) |
28 | 27 | adantr 480 |
. 2
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → ((𝐺 ∘ 𝐹) ∈ (𝑅 RngIso 𝑇) ↔ ((𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇) ∧ (𝐺 ∘ 𝐹):ran (1st ‘𝑅)–1-1-onto→ran
(1st ‘𝑇)))) |
29 | 9, 25, 28 | mpbir2and 709 |
1
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RngIso 𝑇)) |