Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isriscg Structured version   Visualization version   GIF version

Theorem isriscg 37944
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
isriscg ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem isriscg
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . . 4 (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps))
21anbi1d 630 . . 3 (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps)))
3 oveq1 7455 . . . . 5 (𝑟 = 𝑅 → (𝑟 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑠))
43eleq2d 2830 . . . 4 (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))
54exbidv 1920 . . 3 (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))
62, 5anbi12d 631 . 2 (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠))))
7 eleq1 2832 . . . 4 (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps))
87anbi2d 629 . . 3 (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps)))
9 oveq2 7456 . . . . 5 (𝑠 = 𝑆 → (𝑅 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑆))
109eleq2d 2830 . . . 4 (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
1110exbidv 1920 . . 3 (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
128, 11anbi12d 631 . 2 (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
13 df-risc 37943 . 2 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
146, 12, 13brabg 5558 1 ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108   class class class wbr 5166  (class class class)co 7448  RingOpscrngo 37854   RingOpsIso crngoiso 37921  𝑟 crisc 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-iota 6525  df-fv 6581  df-ov 7451  df-risc 37943
This theorem is referenced by:  isrisc  37945  risc  37946
  Copyright terms: Public domain W3C validator