![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isriscg | Structured version Visualization version GIF version |
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
isriscg | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps)) | |
2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps))) |
3 | oveq1 7365 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟 RngIso 𝑠) = (𝑅 RngIso 𝑠)) | |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑠))) |
5 | 4 | exbidv 1925 | . . 3 ⊢ (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠))) |
6 | 2, 5 | anbi12d 632 | . 2 ⊢ (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)))) |
7 | eleq1 2826 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps)) | |
8 | 7 | anbi2d 630 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps))) |
9 | oveq2 7366 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑅 RngIso 𝑠) = (𝑅 RngIso 𝑆)) | |
10 | 9 | eleq2d 2824 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑆))) |
11 | 10 | exbidv 1925 | . . 3 ⊢ (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) |
12 | 8, 11 | anbi12d 632 | . 2 ⊢ (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) |
13 | df-risc 36445 | . 2 ⊢ ≃𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))} | |
14 | 6, 12, 13 | brabg 5497 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 RingOpscrngo 36356 RngIso crngiso 36423 ≃𝑟 crisc 36424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-iota 6449 df-fv 6505 df-ov 7361 df-risc 36445 |
This theorem is referenced by: isrisc 36447 risc 36448 |
Copyright terms: Public domain | W3C validator |