![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isriscg | Structured version Visualization version GIF version |
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
isriscg | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2828 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps)) | |
2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps))) |
3 | oveq1 7442 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑠)) | |
4 | 3 | eleq2d 2826 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑠))) |
5 | 4 | exbidv 1920 | . . 3 ⊢ (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠))) |
6 | 2, 5 | anbi12d 632 | . 2 ⊢ (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))) |
7 | eleq1 2828 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps)) | |
8 | 7 | anbi2d 630 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps))) |
9 | oveq2 7443 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑅 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑆)) | |
10 | 9 | eleq2d 2826 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
11 | 10 | exbidv 1920 | . . 3 ⊢ (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
12 | 8, 11 | anbi12d 632 | . 2 ⊢ (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
13 | df-risc 37982 | . 2 ⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} | |
14 | 6, 12, 13 | brabg 5550 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∃wex 1777 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7435 RingOpscrngo 37893 RingOpsIso crngoiso 37960 ≃𝑟 crisc 37961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-iota 6519 df-fv 6574 df-ov 7438 df-risc 37982 |
This theorem is referenced by: isrisc 37984 risc 37985 |
Copyright terms: Public domain | W3C validator |