Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isriscg Structured version   Visualization version   GIF version

Theorem isriscg 37928
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
isriscg ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem isriscg
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . 4 (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps))
21anbi1d 631 . . 3 (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps)))
3 oveq1 7421 . . . . 5 (𝑟 = 𝑅 → (𝑟 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑠))
43eleq2d 2819 . . . 4 (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))
54exbidv 1920 . . 3 (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))
62, 5anbi12d 632 . 2 (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠))))
7 eleq1 2821 . . . 4 (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps))
87anbi2d 630 . . 3 (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps)))
9 oveq2 7422 . . . . 5 (𝑠 = 𝑆 → (𝑅 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑆))
109eleq2d 2819 . . . 4 (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
1110exbidv 1920 . . 3 (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
128, 11anbi12d 632 . 2 (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
13 df-risc 37927 . 2 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
146, 12, 13brabg 5526 1 ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107   class class class wbr 5125  (class class class)co 7414  RingOpscrngo 37838   RingOpsIso crngoiso 37905  𝑟 crisc 37906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-iota 6495  df-fv 6550  df-ov 7417  df-risc 37927
This theorem is referenced by:  isrisc  37929  risc  37930
  Copyright terms: Public domain W3C validator