| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isriscg | Structured version Visualization version GIF version | ||
| Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| isriscg | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps))) |
| 3 | oveq1 7396 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑟 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑠)) | |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑠))) |
| 5 | 4 | exbidv 1921 | . . 3 ⊢ (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠))) |
| 6 | 2, 5 | anbi12d 632 | . 2 ⊢ (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)))) |
| 7 | eleq1 2817 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps)) | |
| 8 | 7 | anbi2d 630 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps))) |
| 9 | oveq2 7397 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑅 RingOpsIso 𝑠) = (𝑅 RingOpsIso 𝑆)) | |
| 10 | 9 | eleq2d 2815 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| 11 | 10 | exbidv 1921 | . . 3 ⊢ (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| 12 | 8, 11 | anbi12d 632 | . 2 ⊢ (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
| 13 | df-risc 37972 | . 2 ⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} | |
| 14 | 6, 12, 13 | brabg 5501 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5109 (class class class)co 7389 RingOpscrngo 37883 RingOpsIso crngoiso 37950 ≃𝑟 crisc 37951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-iota 6466 df-fv 6521 df-ov 7392 df-risc 37972 |
| This theorem is referenced by: isrisc 37974 risc 37975 |
| Copyright terms: Public domain | W3C validator |