Detailed syntax breakdown of Definition df-rmx
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | crmx 42916 | . 2
class 
Xrm | 
| 2 |  | va | . . 3
setvar 𝑎 | 
| 3 |  | vn | . . 3
setvar 𝑛 | 
| 4 |  | c2 12322 | . . . 4
class
2 | 
| 5 |  | cuz 12879 | . . . 4
class
ℤ≥ | 
| 6 | 4, 5 | cfv 6560 | . . 3
class
(ℤ≥‘2) | 
| 7 |  | cz 12615 | . . 3
class
ℤ | 
| 8 | 2 | cv 1538 | . . . . . . 7
class 𝑎 | 
| 9 |  | cexp 14103 | . . . . . . . . . 10
class
↑ | 
| 10 | 8, 4, 9 | co 7432 | . . . . . . . . 9
class (𝑎↑2) | 
| 11 |  | c1 11157 | . . . . . . . . 9
class
1 | 
| 12 |  | cmin 11493 | . . . . . . . . 9
class 
− | 
| 13 | 10, 11, 12 | co 7432 | . . . . . . . 8
class ((𝑎↑2) −
1) | 
| 14 |  | csqrt 15273 | . . . . . . . 8
class
√ | 
| 15 | 13, 14 | cfv 6560 | . . . . . . 7
class
(√‘((𝑎↑2) − 1)) | 
| 16 |  | caddc 11159 | . . . . . . 7
class 
+ | 
| 17 | 8, 15, 16 | co 7432 | . . . . . 6
class (𝑎 + (√‘((𝑎↑2) −
1))) | 
| 18 | 3 | cv 1538 | . . . . . 6
class 𝑛 | 
| 19 | 17, 18, 9 | co 7432 | . . . . 5
class ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) | 
| 20 |  | vb | . . . . . . 7
setvar 𝑏 | 
| 21 |  | cn0 12528 | . . . . . . . 8
class
ℕ0 | 
| 22 | 21, 7 | cxp 5682 | . . . . . . 7
class
(ℕ0 × ℤ) | 
| 23 | 20 | cv 1538 | . . . . . . . . 9
class 𝑏 | 
| 24 |  | c1st 8013 | . . . . . . . . 9
class
1st | 
| 25 | 23, 24 | cfv 6560 | . . . . . . . 8
class
(1st ‘𝑏) | 
| 26 |  | c2nd 8014 | . . . . . . . . . 10
class
2nd | 
| 27 | 23, 26 | cfv 6560 | . . . . . . . . 9
class
(2nd ‘𝑏) | 
| 28 |  | cmul 11161 | . . . . . . . . 9
class 
· | 
| 29 | 15, 27, 28 | co 7432 | . . . . . . . 8
class
((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)) | 
| 30 | 25, 29, 16 | co 7432 | . . . . . . 7
class
((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))) | 
| 31 | 20, 22, 30 | cmpt 5224 | . . . . . 6
class (𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) | 
| 32 | 31 | ccnv 5683 | . . . . 5
class ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) | 
| 33 | 19, 32 | cfv 6560 | . . . 4
class (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) | 
| 34 | 33, 24 | cfv 6560 | . . 3
class
(1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) | 
| 35 | 2, 3, 6, 7, 34 | cmpo 7434 | . 2
class (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | 
| 36 | 1, 35 | wceq 1539 | 1
wff 
Xrm = (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |