Detailed syntax breakdown of Definition df-rmy
| Step | Hyp | Ref
| Expression |
| 1 | | crmy 42912 |
. 2
class
Yrm |
| 2 | | va |
. . 3
setvar 𝑎 |
| 3 | | vn |
. . 3
setvar 𝑛 |
| 4 | | c2 12321 |
. . . 4
class
2 |
| 5 | | cuz 12878 |
. . . 4
class
ℤ≥ |
| 6 | 4, 5 | cfv 6561 |
. . 3
class
(ℤ≥‘2) |
| 7 | | cz 12613 |
. . 3
class
ℤ |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 9 | | cexp 14102 |
. . . . . . . . . 10
class
↑ |
| 10 | 8, 4, 9 | co 7431 |
. . . . . . . . 9
class (𝑎↑2) |
| 11 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 12 | | cmin 11492 |
. . . . . . . . 9
class
− |
| 13 | 10, 11, 12 | co 7431 |
. . . . . . . 8
class ((𝑎↑2) −
1) |
| 14 | | csqrt 15272 |
. . . . . . . 8
class
√ |
| 15 | 13, 14 | cfv 6561 |
. . . . . . 7
class
(√‘((𝑎↑2) − 1)) |
| 16 | | caddc 11158 |
. . . . . . 7
class
+ |
| 17 | 8, 15, 16 | co 7431 |
. . . . . 6
class (𝑎 + (√‘((𝑎↑2) −
1))) |
| 18 | 3 | cv 1539 |
. . . . . 6
class 𝑛 |
| 19 | 17, 18, 9 | co 7431 |
. . . . 5
class ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) |
| 20 | | vb |
. . . . . . 7
setvar 𝑏 |
| 21 | | cn0 12526 |
. . . . . . . 8
class
ℕ0 |
| 22 | 21, 7 | cxp 5683 |
. . . . . . 7
class
(ℕ0 × ℤ) |
| 23 | 20 | cv 1539 |
. . . . . . . . 9
class 𝑏 |
| 24 | | c1st 8012 |
. . . . . . . . 9
class
1st |
| 25 | 23, 24 | cfv 6561 |
. . . . . . . 8
class
(1st ‘𝑏) |
| 26 | | c2nd 8013 |
. . . . . . . . . 10
class
2nd |
| 27 | 23, 26 | cfv 6561 |
. . . . . . . . 9
class
(2nd ‘𝑏) |
| 28 | | cmul 11160 |
. . . . . . . . 9
class
· |
| 29 | 15, 27, 28 | co 7431 |
. . . . . . . 8
class
((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)) |
| 30 | 25, 29, 16 | co 7431 |
. . . . . . 7
class
((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))) |
| 31 | 20, 22, 30 | cmpt 5225 |
. . . . . 6
class (𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) |
| 32 | 31 | ccnv 5684 |
. . . . 5
class ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) |
| 33 | 19, 32 | cfv 6561 |
. . . 4
class (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) |
| 34 | 33, 26 | cfv 6561 |
. . 3
class
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) |
| 35 | 2, 3, 6, 7, 34 | cmpo 7433 |
. 2
class (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
| 36 | 1, 35 | wceq 1540 |
1
wff
Yrm = (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |