Detailed syntax breakdown of Definition df-rmy
Step | Hyp | Ref
| Expression |
1 | | crmy 40730 |
. 2
class
Yrm |
2 | | va |
. . 3
setvar 𝑎 |
3 | | vn |
. . 3
setvar 𝑛 |
4 | | c2 12037 |
. . . 4
class
2 |
5 | | cuz 12591 |
. . . 4
class
ℤ≥ |
6 | 4, 5 | cfv 6437 |
. . 3
class
(ℤ≥‘2) |
7 | | cz 12328 |
. . 3
class
ℤ |
8 | 2 | cv 1538 |
. . . . . . 7
class 𝑎 |
9 | | cexp 13791 |
. . . . . . . . . 10
class
↑ |
10 | 8, 4, 9 | co 7284 |
. . . . . . . . 9
class (𝑎↑2) |
11 | | c1 10881 |
. . . . . . . . 9
class
1 |
12 | | cmin 11214 |
. . . . . . . . 9
class
− |
13 | 10, 11, 12 | co 7284 |
. . . . . . . 8
class ((𝑎↑2) −
1) |
14 | | csqrt 14953 |
. . . . . . . 8
class
√ |
15 | 13, 14 | cfv 6437 |
. . . . . . 7
class
(√‘((𝑎↑2) − 1)) |
16 | | caddc 10883 |
. . . . . . 7
class
+ |
17 | 8, 15, 16 | co 7284 |
. . . . . 6
class (𝑎 + (√‘((𝑎↑2) −
1))) |
18 | 3 | cv 1538 |
. . . . . 6
class 𝑛 |
19 | 17, 18, 9 | co 7284 |
. . . . 5
class ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) |
20 | | vb |
. . . . . . 7
setvar 𝑏 |
21 | | cn0 12242 |
. . . . . . . 8
class
ℕ0 |
22 | 21, 7 | cxp 5588 |
. . . . . . 7
class
(ℕ0 × ℤ) |
23 | 20 | cv 1538 |
. . . . . . . . 9
class 𝑏 |
24 | | c1st 7838 |
. . . . . . . . 9
class
1st |
25 | 23, 24 | cfv 6437 |
. . . . . . . 8
class
(1st ‘𝑏) |
26 | | c2nd 7839 |
. . . . . . . . . 10
class
2nd |
27 | 23, 26 | cfv 6437 |
. . . . . . . . 9
class
(2nd ‘𝑏) |
28 | | cmul 10885 |
. . . . . . . . 9
class
· |
29 | 15, 27, 28 | co 7284 |
. . . . . . . 8
class
((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)) |
30 | 25, 29, 16 | co 7284 |
. . . . . . 7
class
((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))) |
31 | 20, 22, 30 | cmpt 5158 |
. . . . . 6
class (𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) |
32 | 31 | ccnv 5589 |
. . . . 5
class ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) |
33 | 19, 32 | cfv 6437 |
. . . 4
class (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) |
34 | 33, 26 | cfv 6437 |
. . 3
class
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) |
35 | 2, 3, 6, 7, 34 | cmpo 7286 |
. 2
class (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
36 | 1, 35 | wceq 1539 |
1
wff
Yrm = (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |