Step | Hyp | Ref
| Expression |
1 | | rmxfval 40263 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |
2 | | rmyfval 40264 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |
3 | 2 | oveq2d 7172 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) →
((√‘((𝐴↑2)
− 1)) · (𝐴
Yrm 𝑁)) =
((√‘((𝐴↑2)
− 1)) · (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))) |
4 | 1, 3 | oveq12d 7174 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))))) |
5 | | rmxyelxp 40271 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) ∈ (ℕ0 ×
ℤ)) |
6 | | fveq2 6663 |
. . . . 5
⊢ (𝑎 = (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) → (1st ‘𝑎) = (1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |
7 | | fveq2 6663 |
. . . . . 6
⊢ (𝑎 = (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) → (2nd ‘𝑎) = (2nd
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |
8 | 7 | oveq2d 7172 |
. . . . 5
⊢ (𝑎 = (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) → ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑎))
= ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))) |
9 | 6, 8 | oveq12d 7174 |
. . . 4
⊢ (𝑎 = (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) → ((1st ‘𝑎) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑎)))
= ((1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))))) |
10 | | fveq2 6663 |
. . . . . 6
⊢ (𝑏 = 𝑎 → (1st ‘𝑏) = (1st ‘𝑎)) |
11 | | fveq2 6663 |
. . . . . . 7
⊢ (𝑏 = 𝑎 → (2nd ‘𝑏) = (2nd ‘𝑎)) |
12 | 11 | oveq2d 7172 |
. . . . . 6
⊢ (𝑏 = 𝑎 → ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))
= ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑎))) |
13 | 10, 12 | oveq12d 7174 |
. . . . 5
⊢ (𝑏 = 𝑎 → ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))
= ((1st ‘𝑎) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑎)))) |
14 | 13 | cbvmptv 5139 |
. . . 4
⊢ (𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))) = (𝑎 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑎) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑎)))) |
15 | | ovex 7189 |
. . . 4
⊢
((1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))) ∈ V |
16 | 9, 14, 15 | fvmpt 6764 |
. . 3
⊢ ((◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) ∈ (ℕ0 ×
ℤ) → ((𝑏 ∈
(ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) = ((1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))))) |
17 | 5, 16 | syl 17 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) = ((1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))))) |
18 | | rmxypairf1o 40270 |
. . . 4
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))):(ℕ0 ×
ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) |
19 | 18 | adantr 484 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))):(ℕ0 ×
ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) |
20 | | rmxyelqirr 40269 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) |
21 | | f1ocnvfv2 7032 |
. . 3
⊢ (((𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))):(ℕ0 ×
ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ∧ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0 ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}) → ((𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) |
22 | 19, 20, 21 | syl2anc 587 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) |
23 | 4, 17, 22 | 3eqtr2d 2799 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) |