Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyval Structured version   Visualization version   GIF version

Theorem rmxyval 42204
Description: Main definition of the X and Y sequences. Compare definition 2.3 of [JonesMatijasevic] p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
rmxyval ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด Xrm ๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (๐ด Yrm ๐‘))) = ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))

Proof of Theorem rmxyval
Dummy variables ๐‘Ž ๐‘ ๐‘ ๐‘‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmxfval 42192 . . 3 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด Xrm ๐‘) = (1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))
2 rmyfval 42193 . . . 4 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐ด Yrm ๐‘) = (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))
32oveq2d 7418 . . 3 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (๐ด Yrm ๐‘)) = ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)))))
41, 3oveq12d 7420 . 2 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด Xrm ๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (๐ด Yrm ๐‘))) = ((1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))))
5 rmxyelxp 42201 . . 3 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ (โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โˆˆ (โ„•0 ร— โ„ค))
6 fveq2 6882 . . . . 5 (๐‘Ž = (โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โ†’ (1st โ€˜๐‘Ž) = (1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))
7 fveq2 6882 . . . . . 6 (๐‘Ž = (โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โ†’ (2nd โ€˜๐‘Ž) = (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))
87oveq2d 7418 . . . . 5 (๐‘Ž = (โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โ†’ ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘Ž)) = ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)))))
96, 8oveq12d 7420 . . . 4 (๐‘Ž = (โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โ†’ ((1st โ€˜๐‘Ž) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘Ž))) = ((1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))))
10 fveq2 6882 . . . . . 6 (๐‘ = ๐‘Ž โ†’ (1st โ€˜๐‘) = (1st โ€˜๐‘Ž))
11 fveq2 6882 . . . . . . 7 (๐‘ = ๐‘Ž โ†’ (2nd โ€˜๐‘) = (2nd โ€˜๐‘Ž))
1211oveq2d 7418 . . . . . 6 (๐‘ = ๐‘Ž โ†’ ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘)) = ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘Ž)))
1310, 12oveq12d 7420 . . . . 5 (๐‘ = ๐‘Ž โ†’ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))) = ((1st โ€˜๐‘Ž) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘Ž))))
1413cbvmptv 5252 . . . 4 (๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘)))) = (๐‘Ž โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘Ž) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘Ž))))
15 ovex 7435 . . . 4 ((1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))) โˆˆ V
169, 14, 15fvmpt 6989 . . 3 ((โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘)) โˆˆ (โ„•0 ร— โ„ค) โ†’ ((๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) = ((1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))))
175, 16syl 17 . 2 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) = ((1st โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))))))
18 rmxypairf1o 42200 . . . 4 (๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โ†’ (๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘)))):(โ„•0 ร— โ„ค)โ€“1-1-ontoโ†’{๐‘Ž โˆฃ โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘‘ โˆˆ โ„ค ๐‘Ž = (๐‘ + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท ๐‘‘))})
1918adantr 480 . . 3 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘)))):(โ„•0 ร— โ„ค)โ€“1-1-ontoโ†’{๐‘Ž โˆฃ โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘‘ โˆˆ โ„ค ๐‘Ž = (๐‘ + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท ๐‘‘))})
20 rmxyelqirr 42198 . . 3 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘) โˆˆ {๐‘Ž โˆฃ โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘‘ โˆˆ โ„ค ๐‘Ž = (๐‘ + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท ๐‘‘))})
21 f1ocnvfv2 7268 . . 3 (((๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘)))):(โ„•0 ร— โ„ค)โ€“1-1-ontoโ†’{๐‘Ž โˆฃ โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘‘ โˆˆ โ„ค ๐‘Ž = (๐‘ + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท ๐‘‘))} โˆง ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘) โˆˆ {๐‘Ž โˆฃ โˆƒ๐‘ โˆˆ โ„•0 โˆƒ๐‘‘ โˆˆ โ„ค ๐‘Ž = (๐‘ + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท ๐‘‘))}) โ†’ ((๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) = ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))
2219, 20, 21syl2anc 583 . 2 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜(โ—ก(๐‘ โˆˆ (โ„•0 ร— โ„ค) โ†ฆ ((1st โ€˜๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (2nd โ€˜๐‘))))โ€˜((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))) = ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))
234, 17, 223eqtr2d 2770 1 ((๐ด โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐ด Xrm ๐‘) + ((โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)) ยท (๐ด Yrm ๐‘))) = ((๐ด + (โˆšโ€˜((๐ดโ†‘2) โˆ’ 1)))โ†‘๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  {cab 2701  โˆƒwrex 3062   โ†ฆ cmpt 5222   ร— cxp 5665  โ—กccnv 5666  โ€“1-1-ontoโ†’wf1o 6533  โ€˜cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  1c1 11108   + caddc 11110   ยท cmul 11112   โˆ’ cmin 11443  2c2 12266  โ„•0cn0 12471  โ„คcz 12557  โ„คโ‰ฅcuz 12821  โ†‘cexp 14028  โˆšcsqrt 15182   Xrm crmx 42188   Yrm crmy 42189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-acn 9934  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-ioo 13329  df-ioc 13330  df-ico 13331  df-icc 13332  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-fac 14235  df-bc 14264  df-hash 14292  df-shft 15016  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-limsup 15417  df-clim 15434  df-rlim 15435  df-sum 15635  df-ef 16013  df-sin 16015  df-cos 16016  df-pi 16018  df-dvds 16201  df-gcd 16439  df-numer 16676  df-denom 16677  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-mulg 18992  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-fbas 21231  df-fg 21232  df-cnfld 21235  df-top 22740  df-topon 22757  df-topsp 22779  df-bases 22793  df-cld 22867  df-ntr 22868  df-cls 22869  df-nei 22946  df-lp 22984  df-perf 22985  df-cn 23075  df-cnp 23076  df-haus 23163  df-tx 23410  df-hmeo 23603  df-fil 23694  df-fm 23786  df-flim 23787  df-flf 23788  df-xms 24170  df-ms 24171  df-tms 24172  df-cncf 24742  df-limc 25739  df-dv 25740  df-log 26430  df-squarenn 42129  df-pell1qr 42130  df-pell14qr 42131  df-pell1234qr 42132  df-pellfund 42133  df-rmx 42190  df-rmy 42191
This theorem is referenced by:  rmxycomplete  42206  rmxyneg  42209  rmxyadd  42210  rmxy1  42211  rmxy0  42212  jm2.21  42283
  Copyright terms: Public domain W3C validator