Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxfval Structured version   Visualization version   GIF version

Theorem rmxfval 42892
Description: Value of the X sequence. Not used after rmxyval 42904 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxfval ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Distinct variable groups:   𝐴,𝑏   𝑁,𝑏

Proof of Theorem rmxfval
Dummy variables 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
21fvoveq1d 7409 . . . . . . . . 9 (𝑎 = 𝐴 → (√‘((𝑎↑2) − 1)) = (√‘((𝐴↑2) − 1)))
32oveq1d 7402 . . . . . . . 8 (𝑎 = 𝐴 → ((√‘((𝑎↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))
43oveq2d 7403 . . . . . . 7 (𝑎 = 𝐴 → ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))) = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
54mpteq2dv 5201 . . . . . 6 (𝑎 = 𝐴 → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
65cnveqd 5839 . . . . 5 (𝑎 = 𝐴(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
76adantr 480 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
8 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
98, 2oveq12d 7405 . . . . 5 (𝑎 = 𝐴 → (𝑎 + (√‘((𝑎↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
10 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
119, 10oveqan12d 7406 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
127, 11fveq12d 6865 . . 3 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
1312fveq2d 6862 . 2 ((𝑎 = 𝐴𝑛 = 𝑁) → (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) = (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
14 df-rmx 42890 . 2 Xrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
15 fvex 6871 . 2 (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) ∈ V
1613, 14, 15ovmpoa 7544 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188   × cxp 5636  ccnv 5637  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  0cn0 12442  cz 12529  cuz 12793  cexp 14026  csqrt 15199   Xrm crmx 42888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rmx 42890
This theorem is referenced by:  rmxyval  42904
  Copyright terms: Public domain W3C validator