Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2)) |
2 | 1 | fvoveq1d 7297 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (√‘((𝑎↑2) − 1)) = (√‘((𝐴↑2) −
1))) |
3 | 2 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)) =
((√‘((𝐴↑2)
− 1)) · (2nd ‘𝑏))) |
4 | 3 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) ·
(2nd ‘𝑏)))
= ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏)))) |
5 | 4 | mpteq2dv 5176 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) = (𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))) |
6 | 5 | cnveqd 5784 |
. . . . 5
⊢ (𝑎 = 𝐴 → ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) = ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑛 = 𝑁) → ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏)))) = ◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))) |
8 | | id 22 |
. . . . . 6
⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) |
9 | 8, 2 | oveq12d 7293 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 + (√‘((𝑎↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1)))) |
10 | | id 22 |
. . . . 5
⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) |
11 | 9, 10 | oveqan12d 7294 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑛 = 𝑁) → ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)) |
12 | 7, 11 | fveq12d 6781 |
. . 3
⊢ ((𝑎 = 𝐴 ∧ 𝑛 = 𝑁) → (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) = (◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) |
13 | 12 | fveq2d 6778 |
. 2
⊢ ((𝑎 = 𝐴 ∧ 𝑛 = 𝑁) → (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) = (1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |
14 | | df-rmx 40724 |
. 2
⊢
Xrm = (𝑎 ∈
(ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st
‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
15 | | fvex 6787 |
. 2
⊢
(1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) ∈ V |
16 | 13, 14, 15 | ovmpoa 7428 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ)
↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) ·
(2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) |