Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmyfval Structured version   Visualization version   GIF version

Theorem rmyfval 42928
Description: Value of the Y sequence. Not used after rmxyval 42939 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmyfval ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Distinct variable groups:   𝐴,𝑏   𝑁,𝑏

Proof of Theorem rmyfval
Dummy variables 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
21fvoveq1d 7427 . . . . . . . . 9 (𝑎 = 𝐴 → (√‘((𝑎↑2) − 1)) = (√‘((𝐴↑2) − 1)))
32oveq1d 7420 . . . . . . . 8 (𝑎 = 𝐴 → ((√‘((𝑎↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))
43oveq2d 7421 . . . . . . 7 (𝑎 = 𝐴 → ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))) = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
54mpteq2dv 5215 . . . . . 6 (𝑎 = 𝐴 → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
65cnveqd 5855 . . . . 5 (𝑎 = 𝐴(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
76adantr 480 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
8 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
98, 2oveq12d 7423 . . . . 5 (𝑎 = 𝐴 → (𝑎 + (√‘((𝑎↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
10 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
119, 10oveqan12d 7424 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
127, 11fveq12d 6883 . . 3 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
1312fveq2d 6880 . 2 ((𝑎 = 𝐴𝑛 = 𝑁) → (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
14 df-rmy 42926 . 2 Yrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
15 fvex 6889 . 2 (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) ∈ V
1613, 14, 15ovmpoa 7562 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5201   × cxp 5652  ccnv 5653  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cexp 14079  csqrt 15252   Yrm crmy 42924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rmy 42926
This theorem is referenced by:  rmxyval  42939
  Copyright terms: Public domain W3C validator