Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmyfval Structured version   Visualization version   GIF version

Theorem rmyfval 39500
Description: Value of the Y sequence. Not used after rmxyval 39510 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmyfval ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Distinct variable groups:   𝐴,𝑏   𝑁,𝑏

Proof of Theorem rmyfval
Dummy variables 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7162 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
21fvoveq1d 7177 . . . . . . . . 9 (𝑎 = 𝐴 → (√‘((𝑎↑2) − 1)) = (√‘((𝐴↑2) − 1)))
32oveq1d 7170 . . . . . . . 8 (𝑎 = 𝐴 → ((√‘((𝑎↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))
43oveq2d 7171 . . . . . . 7 (𝑎 = 𝐴 → ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))) = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
54mpteq2dv 5161 . . . . . 6 (𝑎 = 𝐴 → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
65cnveqd 5745 . . . . 5 (𝑎 = 𝐴(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
76adantr 483 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
8 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
98, 2oveq12d 7173 . . . . 5 (𝑎 = 𝐴 → (𝑎 + (√‘((𝑎↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
10 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
119, 10oveqan12d 7174 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
127, 11fveq12d 6676 . . 3 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
1312fveq2d 6673 . 2 ((𝑎 = 𝐴𝑛 = 𝑁) → (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
14 df-rmy 39498 . 2 Yrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
15 fvex 6682 . 2 (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) ∈ V
1613, 14, 15ovmpoa 7304 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cmpt 5145   × cxp 5552  ccnv 5553  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869  2c2 11691  0cn0 11896  cz 11980  cuz 12242  cexp 13428  csqrt 14591   Yrm crmy 39496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-rmy 39498
This theorem is referenced by:  rmxyval  39510
  Copyright terms: Public domain W3C validator