Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmyfval Structured version   Visualization version   GIF version

Theorem rmyfval 39841
 Description: Value of the Y sequence. Not used after rmxyval 39851 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmyfval ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
Distinct variable groups:   𝐴,𝑏   𝑁,𝑏

Proof of Theorem rmyfval
Dummy variables 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
21fvoveq1d 7157 . . . . . . . . 9 (𝑎 = 𝐴 → (√‘((𝑎↑2) − 1)) = (√‘((𝐴↑2) − 1)))
32oveq1d 7150 . . . . . . . 8 (𝑎 = 𝐴 → ((√‘((𝑎↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))
43oveq2d 7151 . . . . . . 7 (𝑎 = 𝐴 → ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))) = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
54mpteq2dv 5126 . . . . . 6 (𝑎 = 𝐴 → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
65cnveqd 5710 . . . . 5 (𝑎 = 𝐴(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
76adantr 484 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
8 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
98, 2oveq12d 7153 . . . . 5 (𝑎 = 𝐴 → (𝑎 + (√‘((𝑎↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
10 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
119, 10oveqan12d 7154 . . . 4 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))
127, 11fveq12d 6652 . . 3 ((𝑎 = 𝐴𝑛 = 𝑁) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))
1312fveq2d 6649 . 2 ((𝑎 = 𝐴𝑛 = 𝑁) → (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
14 df-rmy 39839 . 2 Yrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
15 fvex 6658 . 2 (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))) ∈ V
1613, 14, 15ovmpoa 7284 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5110   × cxp 5517  ◡ccnv 5518  ‘cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  1c1 10527   + caddc 10529   · cmul 10531   − cmin 10859  2c2 11680  ℕ0cn0 11885  ℤcz 11969  ℤ≥cuz 12231  ↑cexp 13425  √csqrt 14584   Yrm crmy 39837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rmy 39839 This theorem is referenced by:  rmxyval  39851
 Copyright terms: Public domain W3C validator