MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rngim Structured version   Visualization version   GIF version

Definition df-rngim 20324
Description: Define the set of non-unital ring isomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.)
Assertion
Ref Expression
df-rngim RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
Distinct variable group:   𝑠,𝑟,𝑓

Detailed syntax breakdown of Definition df-rngim
StepHypRef Expression
1 crngim 20322 . 2 class RngIso
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3466 . . 3 class V
5 vf . . . . . . 7 setvar 𝑓
65cv 1532 . . . . . 6 class 𝑓
76ccnv 5665 . . . . 5 class 𝑓
83cv 1532 . . . . . 6 class 𝑠
92cv 1532 . . . . . 6 class 𝑟
10 crnghm 20321 . . . . . 6 class RngHom
118, 9, 10co 7401 . . . . 5 class (𝑠 RngHom 𝑟)
127, 11wcel 2098 . . . 4 wff 𝑓 ∈ (𝑠 RngHom 𝑟)
139, 8, 10co 7401 . . . 4 class (𝑟 RngHom 𝑠)
1412, 5, 13crab 3424 . . 3 class {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)}
152, 3, 4, 4, 14cmpo 7403 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
161, 15wceq 1533 1 wff RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
Colors of variables: wff setvar class
This definition is referenced by:  isrngim  20332  rngimrcl  20333
  Copyright terms: Public domain W3C validator