| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngimrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngimrcl | ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rngim 20322 | . 2 ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) | |
| 2 | 1 | elmpocl 7610 | 1 ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3402 Vcvv 3444 ◡ccnv 5630 (class class class)co 7369 RngHom crnghm 20319 RngIso crngim 20320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-rngim 20322 |
| This theorem is referenced by: rngimf1o 20339 rngimrnghm 20340 rngimcnv 20341 |
| Copyright terms: Public domain | W3C validator |