Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngimrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
Ref | Expression |
---|---|
rngimrcl | ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rngisom 45398 | . 2 ⊢ RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHomo 𝑟)}) | |
2 | 1 | elmpocl 7502 | 1 ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3069 Vcvv 3430 ◡ccnv 5587 (class class class)co 7268 RngHomo crngh 45395 RngIsom crngs 45396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-dm 5598 df-iota 6388 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rngisom 45398 |
This theorem is referenced by: rngimf1o 45415 rngimrnghm 45416 |
Copyright terms: Public domain | W3C validator |