| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngimrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngimrcl | ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rngim 20382 | . 2 ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) | |
| 2 | 1 | elmpocl 7642 | 1 ⊢ (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 {crab 3413 Vcvv 3457 ◡ccnv 5650 (class class class)co 7399 RngHom crnghm 20379 RngIso crngim 20380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-xp 5657 df-dm 5661 df-iota 6480 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-rngim 20382 |
| This theorem is referenced by: rngimf1o 20399 rngimrnghm 20400 rngimcnv 20401 |
| Copyright terms: Public domain | W3C validator |