Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngimrcl Structured version   Visualization version   GIF version

Theorem rngimrcl 45407
Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
rngimrcl (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem rngimrcl
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngisom 45398 . 2 RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)})
21elmpocl 7502 1 (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3069  Vcvv 3430  ccnv 5587  (class class class)co 7268   RngHomo crngh 45395   RngIsom crngs 45396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-dm 5598  df-iota 6388  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-rngisom 45398
This theorem is referenced by:  rngimf1o  45415  rngimrnghm  45416
  Copyright terms: Public domain W3C validator