MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngimrcl Structured version   Visualization version   GIF version

Theorem rngimrcl 20397
Description: Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
rngimrcl (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem rngimrcl
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngim 20388 . 2 RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
21elmpocl 7662 1 (𝐹 ∈ (𝑅 RngIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  {crab 3418  Vcvv 3461  ccnv 5677  (class class class)co 7419   RngHom crnghm 20385   RngIso crngim 20386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-dm 5688  df-iota 6501  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rngim 20388
This theorem is referenced by:  rngimf1o  20405  rngimrnghm  20406  rngimcnv  20407
  Copyright terms: Public domain W3C validator