MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmrcl Structured version   Visualization version   GIF version

Theorem rnghmrcl 20385
Description: Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
rnghmrcl (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))

Proof of Theorem rnghmrcl
Dummy variables 𝑠 𝑟 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghm 20383 . 2 RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
21elmpocl 7643 1 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3413  csb 3872  cfv 6528  (class class class)co 7400  m cmap 8835  Basecbs 17215  +gcplusg 17258  .rcmulr 17259  Rngcrng 20099   RngHom crnghm 20381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-xp 5658  df-dm 5662  df-iota 6481  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-rnghm 20383
This theorem is referenced by:  isrnghm  20388  rnghmf1o  20399  rnghmco  20404
  Copyright terms: Public domain W3C validator