![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnghmrcl | Structured version Visualization version GIF version |
Description: Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.) |
Ref | Expression |
---|---|
rnghmrcl | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rnghm 20387 | . 2 ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | |
2 | 1 | elmpocl 7662 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 ⦋csb 3889 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Rngcrng 20104 RngHom crnghm 20385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-dm 5688 df-iota 6501 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-rnghm 20387 |
This theorem is referenced by: isrnghm 20392 rnghmf1o 20403 rnghmco 20408 |
Copyright terms: Public domain | W3C validator |