MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrngim Structured version   Visualization version   GIF version

Theorem isrngim 20405
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngim ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))

Proof of Theorem isrngim
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngim 20397 . . . . 5 RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)}))
3 oveq12 7414 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
43adantl 481 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
5 oveq12 7414 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
65ancoms 458 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
76adantl 481 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
87eleq2d 2820 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RngHom 𝑟) ↔ 𝑓 ∈ (𝑆 RngHom 𝑅)))
94, 8rabeqbidv 3434 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
10 elex 3480 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 480 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3480 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 481 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7438 . . . . . 6 (𝑅 RngHom 𝑆) ∈ V
1514rabex 5309 . . . . 5 {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7559 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
1817eleq2d 2820 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)}))
19 cnveq 5853 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2819 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RngHom 𝑅) ↔ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2120elrab 3671 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2218, 21bitrdi 287 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  ccnv 5653  (class class class)co 7405  cmpo 7407   RngHom crnghm 20394   RngIso crngim 20395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rngim 20397
This theorem is referenced by:  isrngim2  20413  rngimcnv  20416  rngcinv  20597  rngcinvALTV  48251
  Copyright terms: Public domain W3C validator