| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-rngim 20437 | . . . . 5
⊢  RngIso =
(𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) | 
| 2 | 1 | a1i 11 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)})) | 
| 3 |  | oveq12 7440 | . . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) | 
| 4 | 3 | adantl 481 | . . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) | 
| 5 |  | oveq12 7440 | . . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) | 
| 6 | 5 | ancoms 458 | . . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) | 
| 7 | 6 | adantl 481 | . . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) | 
| 8 | 7 | eleq2d 2827 | . . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RngHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RngHom 𝑅))) | 
| 9 | 4, 8 | rabeqbidv 3455 | . . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)}) | 
| 10 |  | elex 3501 | . . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | 
| 11 | 10 | adantr 480 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ V) | 
| 12 |  | elex 3501 | . . . . 5
⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) | 
| 13 | 12 | adantl 481 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) | 
| 14 |  | ovex 7464 | . . . . . 6
⊢ (𝑅 RngHom 𝑆) ∈ V | 
| 15 | 14 | rabex 5339 | . . . . 5
⊢ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V | 
| 16 | 15 | a1i 11 | . . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V) | 
| 17 | 2, 9, 11, 13, 16 | ovmpod 7585 | . . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)}) | 
| 18 | 17 | eleq2d 2827 | . 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)})) | 
| 19 |  | cnveq 5884 | . . . 4
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | 
| 20 | 19 | eleq1d 2826 | . . 3
⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RngHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) | 
| 21 | 20 | elrab 3692 | . 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) | 
| 22 | 18, 21 | bitrdi 287 | 1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)))) |