MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrngim Structured version   Visualization version   GIF version

Theorem isrngim 20384
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngim ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))

Proof of Theorem isrngim
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngim 20376 . . . . 5 RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)}))
3 oveq12 7429 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
43adantl 481 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
5 oveq12 7429 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
65ancoms 458 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
76adantl 481 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
87eleq2d 2815 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RngHom 𝑟) ↔ 𝑓 ∈ (𝑆 RngHom 𝑅)))
94, 8rabeqbidv 3446 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
10 elex 3490 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 480 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3490 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 481 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7453 . . . . . 6 (𝑅 RngHom 𝑆) ∈ V
1514rabex 5334 . . . . 5 {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7573 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
1817eleq2d 2815 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)}))
19 cnveq 5876 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2814 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RngHom 𝑅) ↔ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2120elrab 3682 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2218, 21bitrdi 287 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  ccnv 5677  (class class class)co 7420  cmpo 7422   RngHom crnghm 20373   RngIso crngim 20374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-rngim 20376
This theorem is referenced by:  isrngim2  20392  rngimcnv  20395  rngcinv  20570  rngcinvALTV  47338
  Copyright terms: Public domain W3C validator