MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrngim Structured version   Visualization version   GIF version

Theorem isrngim 20361
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.)
Assertion
Ref Expression
isrngim ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))

Proof of Theorem isrngim
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngim 20353 . . . . 5 RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)}))
3 oveq12 7355 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
43adantl 481 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆))
5 oveq12 7355 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
65ancoms 458 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
76adantl 481 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅))
87eleq2d 2817 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RngHom 𝑟) ↔ 𝑓 ∈ (𝑆 RngHom 𝑅)))
94, 8rabeqbidv 3413 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
10 elex 3457 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 480 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3457 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 481 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7379 . . . . . 6 (𝑅 RngHom 𝑆) ∈ V
1514rabex 5277 . . . . 5 {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7498 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)})
1817eleq2d 2817 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)}))
19 cnveq 5813 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2816 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RngHom 𝑅) ↔ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2120elrab 3647 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓 ∈ (𝑆 RngHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)))
2218, 21bitrdi 287 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  ccnv 5615  (class class class)co 7346  cmpo 7348   RngHom crnghm 20350   RngIso crngim 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rngim 20353
This theorem is referenced by:  isrngim2  20369  rngimcnv  20372  rngcinv  20550  rngcinvALTV  48306
  Copyright terms: Public domain W3C validator