Step | Hyp | Ref
| Expression |
1 | | df-rngim 20335 |
. . . . 5
⊢ RngIso =
(𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)})) |
3 | | oveq12 7421 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) |
4 | 3 | adantl 481 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RngHom 𝑠) = (𝑅 RngHom 𝑆)) |
5 | | oveq12 7421 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) |
6 | 5 | ancoms 458 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RngHom 𝑟) = (𝑆 RngHom 𝑅)) |
8 | 7 | eleq2d 2818 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RngHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RngHom 𝑅))) |
9 | 4, 8 | rabeqbidv 3448 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)} = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)}) |
10 | | elex 3492 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ V) |
12 | | elex 3492 |
. . . . 5
⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) |
13 | 12 | adantl 481 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ V) |
14 | | ovex 7445 |
. . . . . 6
⊢ (𝑅 RngHom 𝑆) ∈ V |
15 | 14 | rabex 5332 |
. . . . 5
⊢ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V |
16 | 15 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ∈ V) |
17 | 2, 9, 11, 13, 16 | ovmpod 7563 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)}) |
18 | 17 | eleq2d 2818 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)})) |
19 | | cnveq 5873 |
. . . 4
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
20 | 19 | eleq1d 2817 |
. . 3
⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RngHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) |
21 | 20 | elrab 3683 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RngHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) |
22 | 18, 21 | bitrdi 287 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)))) |