Step | Hyp | Ref
| Expression |
1 | | crngo 36757 |
. 2
class
RingOps |
2 | | vg |
. . . . . . 7
setvar π |
3 | 2 | cv 1540 |
. . . . . 6
class π |
4 | | cablo 29792 |
. . . . . 6
class
AbelOp |
5 | 3, 4 | wcel 2106 |
. . . . 5
wff π β AbelOp |
6 | 3 | crn 5677 |
. . . . . . 7
class ran π |
7 | 6, 6 | cxp 5674 |
. . . . . 6
class (ran
π Γ ran π) |
8 | | vh |
. . . . . . 7
setvar β |
9 | 8 | cv 1540 |
. . . . . 6
class β |
10 | 7, 6, 9 | wf 6539 |
. . . . 5
wff β:(ran π Γ ran π)βΆran π |
11 | 5, 10 | wa 396 |
. . . 4
wff (π β AbelOp β§ β:(ran π Γ ran π)βΆran π) |
12 | | vx |
. . . . . . . . . . . . 13
setvar π₯ |
13 | 12 | cv 1540 |
. . . . . . . . . . . 12
class π₯ |
14 | | vy |
. . . . . . . . . . . . 13
setvar π¦ |
15 | 14 | cv 1540 |
. . . . . . . . . . . 12
class π¦ |
16 | 13, 15, 9 | co 7408 |
. . . . . . . . . . 11
class (π₯βπ¦) |
17 | | vz |
. . . . . . . . . . . 12
setvar π§ |
18 | 17 | cv 1540 |
. . . . . . . . . . 11
class π§ |
19 | 16, 18, 9 | co 7408 |
. . . . . . . . . 10
class ((π₯βπ¦)βπ§) |
20 | 15, 18, 9 | co 7408 |
. . . . . . . . . . 11
class (π¦βπ§) |
21 | 13, 20, 9 | co 7408 |
. . . . . . . . . 10
class (π₯β(π¦βπ§)) |
22 | 19, 21 | wceq 1541 |
. . . . . . . . 9
wff ((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) |
23 | 15, 18, 3 | co 7408 |
. . . . . . . . . . 11
class (π¦ππ§) |
24 | 13, 23, 9 | co 7408 |
. . . . . . . . . 10
class (π₯β(π¦ππ§)) |
25 | 13, 18, 9 | co 7408 |
. . . . . . . . . . 11
class (π₯βπ§) |
26 | 16, 25, 3 | co 7408 |
. . . . . . . . . 10
class ((π₯βπ¦)π(π₯βπ§)) |
27 | 24, 26 | wceq 1541 |
. . . . . . . . 9
wff (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) |
28 | 13, 15, 3 | co 7408 |
. . . . . . . . . . 11
class (π₯ππ¦) |
29 | 28, 18, 9 | co 7408 |
. . . . . . . . . 10
class ((π₯ππ¦)βπ§) |
30 | 25, 20, 3 | co 7408 |
. . . . . . . . . 10
class ((π₯βπ§)π(π¦βπ§)) |
31 | 29, 30 | wceq 1541 |
. . . . . . . . 9
wff ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§)) |
32 | 22, 27, 31 | w3a 1087 |
. . . . . . . 8
wff (((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) |
33 | 32, 17, 6 | wral 3061 |
. . . . . . 7
wff
βπ§ β ran
π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) |
34 | 33, 14, 6 | wral 3061 |
. . . . . 6
wff
βπ¦ β ran
πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) |
35 | 34, 12, 6 | wral 3061 |
. . . . 5
wff
βπ₯ β ran
πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) |
36 | 16, 15 | wceq 1541 |
. . . . . . . 8
wff (π₯βπ¦) = π¦ |
37 | 15, 13, 9 | co 7408 |
. . . . . . . . 9
class (π¦βπ₯) |
38 | 37, 15 | wceq 1541 |
. . . . . . . 8
wff (π¦βπ₯) = π¦ |
39 | 36, 38 | wa 396 |
. . . . . . 7
wff ((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦) |
40 | 39, 14, 6 | wral 3061 |
. . . . . 6
wff
βπ¦ β ran
π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦) |
41 | 40, 12, 6 | wrex 3070 |
. . . . 5
wff
βπ₯ β ran
πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦) |
42 | 35, 41 | wa 396 |
. . . 4
wff
(βπ₯ β
ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦)) |
43 | 11, 42 | wa 396 |
. . 3
wff ((π β AbelOp β§ β:(ran π Γ ran π)βΆran π) β§ (βπ₯ β ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦))) |
44 | 43, 2, 8 | copab 5210 |
. 2
class
{β¨π, ββ© β£ ((π β AbelOp β§ β:(ran π Γ ran π)βΆran π) β§ (βπ₯ β ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦)))} |
45 | 1, 44 | wceq 1541 |
1
wff RingOps =
{β¨π, ββ© β£ ((π β AbelOp β§ β:(ran π Γ ran π)βΆran π) β§ (βπ₯ β ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦)))} |