Detailed syntax breakdown of Definition df-rngo
Step | Hyp | Ref
| Expression |
1 | | crngo 35979 |
. 2
class
RingOps |
2 | | vg |
. . . . . . 7
setvar 𝑔 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑔 |
4 | | cablo 28807 |
. . . . . 6
class
AbelOp |
5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑔 ∈ AbelOp |
6 | 3 | crn 5581 |
. . . . . . 7
class ran 𝑔 |
7 | 6, 6 | cxp 5578 |
. . . . . 6
class (ran
𝑔 × ran 𝑔) |
8 | | vh |
. . . . . . 7
setvar ℎ |
9 | 8 | cv 1538 |
. . . . . 6
class ℎ |
10 | 7, 6, 9 | wf 6414 |
. . . . 5
wff ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔 |
11 | 5, 10 | wa 395 |
. . . 4
wff (𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) |
12 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
13 | 12 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
14 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
15 | 14 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
16 | 13, 15, 9 | co 7255 |
. . . . . . . . . . 11
class (𝑥ℎ𝑦) |
17 | | vz |
. . . . . . . . . . . 12
setvar 𝑧 |
18 | 17 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
19 | 16, 18, 9 | co 7255 |
. . . . . . . . . 10
class ((𝑥ℎ𝑦)ℎ𝑧) |
20 | 15, 18, 9 | co 7255 |
. . . . . . . . . . 11
class (𝑦ℎ𝑧) |
21 | 13, 20, 9 | co 7255 |
. . . . . . . . . 10
class (𝑥ℎ(𝑦ℎ𝑧)) |
22 | 19, 21 | wceq 1539 |
. . . . . . . . 9
wff ((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) |
23 | 15, 18, 3 | co 7255 |
. . . . . . . . . . 11
class (𝑦𝑔𝑧) |
24 | 13, 23, 9 | co 7255 |
. . . . . . . . . 10
class (𝑥ℎ(𝑦𝑔𝑧)) |
25 | 13, 18, 9 | co 7255 |
. . . . . . . . . . 11
class (𝑥ℎ𝑧) |
26 | 16, 25, 3 | co 7255 |
. . . . . . . . . 10
class ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) |
27 | 24, 26 | wceq 1539 |
. . . . . . . . 9
wff (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) |
28 | 13, 15, 3 | co 7255 |
. . . . . . . . . . 11
class (𝑥𝑔𝑦) |
29 | 28, 18, 9 | co 7255 |
. . . . . . . . . 10
class ((𝑥𝑔𝑦)ℎ𝑧) |
30 | 25, 20, 3 | co 7255 |
. . . . . . . . . 10
class ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧)) |
31 | 29, 30 | wceq 1539 |
. . . . . . . . 9
wff ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧)) |
32 | 22, 27, 31 | w3a 1085 |
. . . . . . . 8
wff (((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) |
33 | 32, 17, 6 | wral 3063 |
. . . . . . 7
wff
∀𝑧 ∈ ran
𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) |
34 | 33, 14, 6 | wral 3063 |
. . . . . 6
wff
∀𝑦 ∈ ran
𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) |
35 | 34, 12, 6 | wral 3063 |
. . . . 5
wff
∀𝑥 ∈ ran
𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) |
36 | 16, 15 | wceq 1539 |
. . . . . . . 8
wff (𝑥ℎ𝑦) = 𝑦 |
37 | 15, 13, 9 | co 7255 |
. . . . . . . . 9
class (𝑦ℎ𝑥) |
38 | 37, 15 | wceq 1539 |
. . . . . . . 8
wff (𝑦ℎ𝑥) = 𝑦 |
39 | 36, 38 | wa 395 |
. . . . . . 7
wff ((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) |
40 | 39, 14, 6 | wral 3063 |
. . . . . 6
wff
∀𝑦 ∈ ran
𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) |
41 | 40, 12, 6 | wrex 3064 |
. . . . 5
wff
∃𝑥 ∈ ran
𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) |
42 | 35, 41 | wa 395 |
. . . 4
wff
(∀𝑥 ∈
ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)) |
43 | 11, 42 | wa 395 |
. . 3
wff ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦))) |
44 | 43, 2, 8 | copab 5132 |
. 2
class
{〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} |
45 | 1, 44 | wceq 1539 |
1
wff RingOps =
{〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} |