| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relrngo | Structured version Visualization version GIF version | ||
| Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| relrngo | ⊢ Rel RingOps |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rngo 37861 | . 2 ⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} | |
| 2 | 1 | relopabiv 5810 | 1 ⊢ Rel RingOps |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 × cxp 5663 ran crn 5666 Rel wrel 5670 ⟶wf 6537 (class class class)co 7413 AbelOpcablo 30491 RingOpscrngo 37860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-opab 5186 df-xp 5671 df-rel 5672 df-rngo 37861 |
| This theorem is referenced by: isrngo 37863 rngoi 37865 rngoablo2 37875 rngosn3 37890 isdrngo1 37922 iscrngo2 37963 |
| Copyright terms: Public domain | W3C validator |