![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relrngo | Structured version Visualization version GIF version |
Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relrngo | ⊢ Rel RingOps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rngo 37401 | . 2 ⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} | |
2 | 1 | relopabiv 5826 | 1 ⊢ Rel RingOps |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 × cxp 5680 ran crn 5683 Rel wrel 5687 ⟶wf 6549 (class class class)co 7426 AbelOpcablo 30374 RingOpscrngo 37400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-in 3956 df-ss 3966 df-opab 5215 df-xp 5688 df-rel 5689 df-rngo 37401 |
This theorem is referenced by: isrngo 37403 rngoi 37405 rngoablo2 37415 rngosn3 37430 isdrngo1 37462 iscrngo2 37503 |
Copyright terms: Public domain | W3C validator |