![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relrngo | Structured version Visualization version GIF version |
Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relrngo | β’ Rel RingOps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rngo 36758 | . 2 β’ RingOps = {β¨π, ββ© β£ ((π β AbelOp β§ β:(ran π Γ ran π)βΆran π) β§ (βπ₯ β ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦)))} | |
2 | 1 | relopabiv 5820 | 1 β’ Rel RingOps |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 Γ cxp 5674 ran crn 5677 Rel wrel 5681 βΆwf 6539 (class class class)co 7408 AbelOpcablo 29792 RingOpscrngo 36757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-rel 5683 df-rngo 36758 |
This theorem is referenced by: isrngo 36760 rngoi 36762 rngoablo2 36772 rngosn3 36787 isdrngo1 36819 iscrngo2 36860 |
Copyright terms: Public domain | W3C validator |