Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relrngo Structured version   Visualization version   GIF version

Theorem relrngo 35981
Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
relrngo Rel RingOps

Proof of Theorem relrngo
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngo 35980 . 2 RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
21relopabiv 5719 1 Rel RingOps
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   × cxp 5578  ran crn 5581  Rel wrel 5585  wf 6414  (class class class)co 7255  AbelOpcablo 28807  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586  df-rel 5587  df-rngo 35980
This theorem is referenced by:  isrngo  35982  rngoi  35984  rngoablo2  35994  rngosn3  36009  isdrngo1  36041  iscrngo2  36082
  Copyright terms: Public domain W3C validator