Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relrngo Structured version   Visualization version   GIF version

Theorem relrngo 37862
Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
relrngo Rel RingOps

Proof of Theorem relrngo
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngo 37861 . 2 RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
21relopabiv 5810 1 Rel RingOps
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059   × cxp 5663  ran crn 5666  Rel wrel 5670  wf 6537  (class class class)co 7413  AbelOpcablo 30491  RingOpscrngo 37860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-ss 3948  df-opab 5186  df-xp 5671  df-rel 5672  df-rngo 37861
This theorem is referenced by:  isrngo  37863  rngoi  37865  rngoablo2  37875  rngosn3  37890  isdrngo1  37922  iscrngo2  37963
  Copyright terms: Public domain W3C validator