Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relrngo Structured version   Visualization version   GIF version

Theorem relrngo 37897
Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
relrngo Rel RingOps

Proof of Theorem relrngo
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngo 37896 . 2 RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
21relopabiv 5837 1 Rel RingOps
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  wrex 3070   × cxp 5691  ran crn 5694  Rel wrel 5698  wf 6565  (class class class)co 7438  AbelOpcablo 30589  RingOpscrngo 37895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-ss 3983  df-opab 5214  df-xp 5699  df-rel 5700  df-rngo 37896
This theorem is referenced by:  isrngo  37898  rngoi  37900  rngoablo2  37910  rngosn3  37925  isdrngo1  37957  iscrngo2  37998
  Copyright terms: Public domain W3C validator