Step | Hyp | Ref
| Expression |
1 | | df-br 5071 |
. . . 4
⊢ (𝐺RingOps𝐻 ↔ 〈𝐺, 𝐻〉 ∈ RingOps) |
2 | | relrngo 35981 |
. . . . 5
⊢ Rel
RingOps |
3 | 2 | brrelex1i 5634 |
. . . 4
⊢ (𝐺RingOps𝐻 → 𝐺 ∈ V) |
4 | 1, 3 | sylbir 234 |
. . 3
⊢
(〈𝐺, 𝐻〉 ∈ RingOps →
𝐺 ∈
V) |
5 | 4 | a1i 11 |
. 2
⊢ (𝐻 ∈ 𝐴 → (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ V)) |
6 | | elex 3440 |
. . . 4
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ V) |
7 | 6 | ad2antrr 722 |
. . 3
⊢ (((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))) → 𝐺 ∈ V) |
8 | 7 | a1i 11 |
. 2
⊢ (𝐻 ∈ 𝐴 → (((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))) → 𝐺 ∈ V)) |
9 | | df-rngo 35980 |
. . . . 5
⊢ RingOps =
{〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} |
10 | 9 | eleq2i 2830 |
. . . 4
⊢
(〈𝐺, 𝐻〉 ∈ RingOps ↔
〈𝐺, 𝐻〉 ∈ {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))}) |
11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑔 = 𝐺) |
12 | 11 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp)) |
13 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ℎ = 𝐻) |
14 | 11 | rneqd 5836 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ran 𝑔 = ran 𝐺) |
15 | | isring.1 |
. . . . . . . . . 10
⊢ 𝑋 = ran 𝐺 |
16 | 14, 15 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ran 𝑔 = 𝑋) |
17 | 16 | sqxpeqd 5612 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (ran 𝑔 × ran 𝑔) = (𝑋 × 𝑋)) |
18 | 13, 17, 16 | feq123d 6573 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔 ↔ 𝐻:(𝑋 × 𝑋)⟶𝑋)) |
19 | 12, 18 | anbi12d 630 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ↔ (𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋))) |
20 | 13 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
21 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑧 = 𝑧) |
22 | 13, 20, 21 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥ℎ𝑦)ℎ𝑧) = ((𝑥𝐻𝑦)𝐻𝑧)) |
23 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → 𝑥 = 𝑥) |
24 | 13 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑦ℎ𝑧) = (𝑦𝐻𝑧)) |
25 | 13, 23, 24 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑥ℎ(𝑦ℎ𝑧)) = (𝑥𝐻(𝑦𝐻𝑧))) |
26 | 22, 25 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ↔ ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))) |
27 | 11 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑦𝑔𝑧) = (𝑦𝐺𝑧)) |
28 | 13, 23, 27 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑥ℎ(𝑦𝑔𝑧)) = (𝑥𝐻(𝑦𝐺𝑧))) |
29 | 13 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑥ℎ𝑧) = (𝑥𝐻𝑧)) |
30 | 11, 20, 29 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) |
31 | 28, 30 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ↔ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))) |
32 | 11 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
33 | 13, 32, 21 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥𝐺𝑦)𝐻𝑧)) |
34 | 11, 29, 24 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧)) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) |
35 | 33, 34 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧)) ↔ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))) |
36 | 26, 31, 35 | 3anbi123d 1434 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ↔ (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))) |
37 | 16, 36 | raleqbidv 3327 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ↔ ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))) |
38 | 16, 37 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))) |
39 | 16, 38 | raleqbidv 3327 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))) |
40 | 20 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑥ℎ𝑦) = 𝑦 ↔ (𝑥𝐻𝑦) = 𝑦)) |
41 | 13 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (𝑦ℎ𝑥) = (𝑦𝐻𝑥)) |
42 | 41 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((𝑦ℎ𝑥) = 𝑦 ↔ (𝑦𝐻𝑥) = 𝑦)) |
43 | 40, 42 | anbi12d 630 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) ↔ ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))) |
44 | 16, 43 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))) |
45 | 16, 44 | rexeqbidv 3328 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))) |
46 | 39, 45 | anbi12d 630 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → ((∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)) ↔ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) |
47 | 19, 46 | anbi12d 630 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ ℎ = 𝐻) → (((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦))) ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) |
48 | 47 | opelopabga 5439 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ 𝐴) → (〈𝐺, 𝐻〉 ∈ {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) |
49 | 10, 48 | syl5bb 282 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ 𝐴) → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) |
50 | 49 | expcom 413 |
. 2
⊢ (𝐻 ∈ 𝐴 → (𝐺 ∈ V → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))) |
51 | 5, 8, 50 | pm5.21ndd 380 |
1
⊢ (𝐻 ∈ 𝐴 → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) |