Detailed syntax breakdown of Definition df-rprm
| Step | Hyp | Ref
| Expression |
| 1 | | crpm 20432 |
. 2
class
RPrime |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑤 |
| 6 | | cbs 17247 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Base‘𝑤) |
| 8 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑝 |
| 10 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 12 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 13 | 12 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 14 | | cmulr 17298 |
. . . . . . . . . . . 12
class
.r |
| 15 | 5, 14 | cfv 6561 |
. . . . . . . . . . 11
class
(.r‘𝑤) |
| 16 | 11, 13, 15 | co 7431 |
. . . . . . . . . 10
class (𝑥(.r‘𝑤)𝑦) |
| 17 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 18 | 17 | cv 1539 |
. . . . . . . . . 10
class 𝑑 |
| 19 | 9, 16, 18 | wbr 5143 |
. . . . . . . . 9
wff 𝑝𝑑(𝑥(.r‘𝑤)𝑦) |
| 20 | 9, 11, 18 | wbr 5143 |
. . . . . . . . . 10
wff 𝑝𝑑𝑥 |
| 21 | 9, 13, 18 | wbr 5143 |
. . . . . . . . . 10
wff 𝑝𝑑𝑦 |
| 22 | 20, 21 | wo 848 |
. . . . . . . . 9
wff (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦) |
| 23 | 19, 22 | wi 4 |
. . . . . . . 8
wff (𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦)) |
| 24 | | cdsr 20354 |
. . . . . . . . 9
class
∥r |
| 25 | 5, 24 | cfv 6561 |
. . . . . . . 8
class
(∥r‘𝑤) |
| 26 | 23, 17, 25 | wsbc 3788 |
. . . . . . 7
wff
[(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦)) |
| 27 | 4 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 28 | 26, 12, 27 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑏
[(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦)) |
| 29 | 28, 10, 27 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦)) |
| 30 | | cui 20355 |
. . . . . . . 8
class
Unit |
| 31 | 5, 30 | cfv 6561 |
. . . . . . 7
class
(Unit‘𝑤) |
| 32 | | c0g 17484 |
. . . . . . . . 9
class
0g |
| 33 | 5, 32 | cfv 6561 |
. . . . . . . 8
class
(0g‘𝑤) |
| 34 | 33 | csn 4626 |
. . . . . . 7
class
{(0g‘𝑤)} |
| 35 | 31, 34 | cun 3949 |
. . . . . 6
class
((Unit‘𝑤)
∪ {(0g‘𝑤)}) |
| 36 | 27, 35 | cdif 3948 |
. . . . 5
class (𝑏 ∖ ((Unit‘𝑤) ∪
{(0g‘𝑤)})) |
| 37 | 29, 8, 36 | crab 3436 |
. . . 4
class {𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))} |
| 38 | 4, 7, 37 | csb 3899 |
. . 3
class
⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))} |
| 39 | 2, 3, 38 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦
⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) |
| 40 | 1, 39 | wceq 1540 |
1
wff RPrime =
(𝑤 ∈ V ↦
⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) |