MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euclemma Structured version   Visualization version   GIF version

Theorem euclemma 16646
Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
euclemma ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃𝑀𝑃𝑁)))

Proof of Theorem euclemma
StepHypRef Expression
1 coprm 16644 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (¬ 𝑃𝑀 ↔ (𝑃 gcd 𝑀) = 1))
213adant3 1133 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑀 ↔ (𝑃 gcd 𝑀) = 1))
32anbi2d 630 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃𝑀) ↔ (𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1)))
4 prmz 16608 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 coprmdvds 16586 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃𝑁))
64, 5syl3an1 1164 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ (𝑃 gcd 𝑀) = 1) → 𝑃𝑁))
73, 6sylbid 239 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ (𝑀 · 𝑁) ∧ ¬ 𝑃𝑀) → 𝑃𝑁))
87expd 417 . . 3 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (¬ 𝑃𝑀𝑃𝑁)))
9 df-or 847 . . 3 ((𝑃𝑀𝑃𝑁) ↔ (¬ 𝑃𝑀𝑃𝑁))
108, 9syl6ibr 252 . 2 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) → (𝑃𝑀𝑃𝑁)))
11 ordvdsmul 16239 . . 3 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑀𝑃𝑁) → 𝑃 ∥ (𝑀 · 𝑁)))
124, 11syl3an1 1164 . 2 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑀𝑃𝑁) → 𝑃 ∥ (𝑀 · 𝑁)))
1310, 12impbid 211 1 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃𝑀𝑃𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5147  (class class class)co 7404  1c1 11107   · cmul 11111  cz 12554  cdvds 16193   gcd cgcd 16431  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605
This theorem is referenced by:  isprm6  16647  prmdvdsexp  16648  prmdvdssqOLD  16652  prmfac1  16654  pcpremul  16772  4sqlem11  16884  ablfac1eulem  19934  znfld  21100  wilthlem1  26552  mumul  26665  lgslem1  26780  lgsdir2  26813  lgsqrlem2  26830  2sqlem4  26904  2sqlem6  26906  2sqmod  26919  dvdszzq  31999  prmdvdsbc  32000  aks6d1c2p2  40895  etransclem44  44929  lighneallem3  46210  lighneallem4  46213
  Copyright terms: Public domain W3C validator