Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmval Structured version   Visualization version   GIF version

Theorem rprmval 31566
Description: The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
rprmval.b 𝐵 = (Base‘𝑅)
rprmval.u 𝑈 = (Unit‘𝑅)
rprmval.1 0 = (0g𝑅)
rprmval.m · = (.r𝑅)
rprmval.d = (∥r𝑅)
Assertion
Ref Expression
rprmval (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Distinct variable groups:   0 ,𝑝   𝐵,𝑝   𝑅,𝑝,𝑥,𝑦   𝑈,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦,𝑝)   · (𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑝)   0 (𝑥,𝑦)

Proof of Theorem rprmval
Dummy variables 𝑏 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rprm 19870 . 2 RPrime = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
2 fvexd 6771 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 simpr 484 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑟))
4 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
63, 5eqtrd 2778 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑅))
7 rprmval.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7eqtr4di 2797 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
9 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
10 rprmval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
119, 10eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
12 fveq2 6756 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 rprmval.1 . . . . . . . . 9 0 = (0g𝑅)
1412, 13eqtr4di 2797 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514sneqd 4570 . . . . . . 7 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
1611, 15uneq12d 4094 . . . . . 6 (𝑟 = 𝑅 → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
1716adantr 480 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
188, 17difeq12d 4054 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) = (𝐵 ∖ (𝑈 ∪ { 0 })))
19 fvexd 6771 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∥r𝑟) ∈ V)
20 eqidd 2739 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑝 = 𝑝)
21 simpr 484 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑟))
22 fveq2 6756 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
2322ad2antrr 722 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (∥r𝑟) = (∥r𝑅))
2421, 23eqtrd 2778 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑅))
25 rprmval.d . . . . . . . . . 10 = (∥r𝑅)
2624, 25eqtr4di 2797 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = )
27 fveq2 6756 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
28 rprmval.m . . . . . . . . . . . 12 · = (.r𝑅)
2927, 28eqtr4di 2797 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
3029ad2antrr 722 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (.r𝑟) = · )
3130oveqd 7272 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
3220, 26, 31breq123d 5084 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑(𝑥(.r𝑟)𝑦) ↔ 𝑝 (𝑥 · 𝑦)))
3326breqd 5081 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑥𝑝 𝑥))
3426breqd 5081 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑦𝑝 𝑦))
3533, 34orbi12d 915 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑𝑥𝑝𝑑𝑦) ↔ (𝑝 𝑥𝑝 𝑦)))
3632, 35imbi12d 344 . . . . . . 7 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
3719, 36sbcied 3756 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ([(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
388, 37raleqbidv 3327 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
398, 38raleqbidv 3327 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
4018, 39rabeqbidv 3410 . . 3 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → {𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
412, 40csbied 3866 . 2 (𝑟 = 𝑅(Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
42 elex 3440 . 2 (𝑅𝑉𝑅 ∈ V)
437fvexi 6770 . . . . 5 𝐵 ∈ V
4443difexi 5247 . . . 4 (𝐵 ∖ (𝑈 ∪ { 0 })) ∈ V
4544rabex 5251 . . 3 {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V
4645a1i 11 . 2 (𝑅𝑉 → {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V)
471, 41, 42, 46fvmptd3 6880 1 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  [wsbc 3711  csb 3828  cdif 3880  cun 3881  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  0gc0g 17067  rcdsr 19795  Unitcui 19796  RPrimecrpm 19869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-rprm 19870
This theorem is referenced by:  isrprm  31567
  Copyright terms: Public domain W3C validator