Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmval Structured version   Visualization version   GIF version

Theorem rprmval 31170
Description: The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
rprmval.b 𝐵 = (Base‘𝑅)
rprmval.u 𝑈 = (Unit‘𝑅)
rprmval.1 0 = (0g𝑅)
rprmval.m · = (.r𝑅)
rprmval.d = (∥r𝑅)
Assertion
Ref Expression
rprmval (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Distinct variable groups:   0 ,𝑝   𝐵,𝑝   𝑅,𝑝,𝑥,𝑦   𝑈,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦,𝑝)   · (𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑝)   0 (𝑥,𝑦)

Proof of Theorem rprmval
Dummy variables 𝑏 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rprm 19519 . 2 RPrime = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
2 fvexd 6666 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 simpr 489 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑟))
4 fveq2 6651 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54adantr 485 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
63, 5eqtrd 2794 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑅))
7 rprmval.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7eqtr4di 2812 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
9 fveq2 6651 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
10 rprmval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
119, 10eqtr4di 2812 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
12 fveq2 6651 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 rprmval.1 . . . . . . . . 9 0 = (0g𝑅)
1412, 13eqtr4di 2812 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514sneqd 4527 . . . . . . 7 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
1611, 15uneq12d 4065 . . . . . 6 (𝑟 = 𝑅 → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
1716adantr 485 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
188, 17difeq12d 4025 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) = (𝐵 ∖ (𝑈 ∪ { 0 })))
19 fvexd 6666 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∥r𝑟) ∈ V)
20 eqidd 2760 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑝 = 𝑝)
21 simpr 489 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑟))
22 fveq2 6651 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
2322ad2antrr 726 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (∥r𝑟) = (∥r𝑅))
2421, 23eqtrd 2794 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑅))
25 rprmval.d . . . . . . . . . 10 = (∥r𝑅)
2624, 25eqtr4di 2812 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = )
27 fveq2 6651 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
28 rprmval.m . . . . . . . . . . . 12 · = (.r𝑅)
2927, 28eqtr4di 2812 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
3029ad2antrr 726 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (.r𝑟) = · )
3130oveqd 7160 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
3220, 26, 31breq123d 5039 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑(𝑥(.r𝑟)𝑦) ↔ 𝑝 (𝑥 · 𝑦)))
3326breqd 5036 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑥𝑝 𝑥))
3426breqd 5036 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑦𝑝 𝑦))
3533, 34orbi12d 917 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑𝑥𝑝𝑑𝑦) ↔ (𝑝 𝑥𝑝 𝑦)))
3632, 35imbi12d 349 . . . . . . 7 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
3719, 36sbcied 3735 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ([(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
388, 37raleqbidv 3317 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
398, 38raleqbidv 3317 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
4018, 39rabeqbidv 3396 . . 3 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → {𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
412, 40csbied 3837 . 2 (𝑟 = 𝑅(Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
42 elex 3427 . 2 (𝑅𝑉𝑅 ∈ V)
437fvexi 6665 . . . . 5 𝐵 ∈ V
4443difexi 5191 . . . 4 (𝐵 ∖ (𝑈 ∪ { 0 })) ∈ V
4544rabex 5195 . . 3 {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V
4645a1i 11 . 2 (𝑅𝑉 → {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V)
471, 41, 42, 46fvmptd3 6775 1 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wo 845   = wceq 1539  wcel 2112  wral 3068  {crab 3072  Vcvv 3407  [wsbc 3693  csb 3801  cdif 3851  cun 3852  {csn 4515   class class class wbr 5025  cfv 6328  (class class class)co 7143  Basecbs 16526  .rcmulr 16609  0gc0g 16756  rcdsr 19444  Unitcui 19445  RPrimecrpm 19518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pr 5291
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7146  df-rprm 19519
This theorem is referenced by:  isrprm  31171
  Copyright terms: Public domain W3C validator