Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmval Structured version   Visualization version   GIF version

Theorem rprmval 33487
Description: The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
rprmval.b 𝐵 = (Base‘𝑅)
rprmval.u 𝑈 = (Unit‘𝑅)
rprmval.1 0 = (0g𝑅)
rprmval.m · = (.r𝑅)
rprmval.d = (∥r𝑅)
Assertion
Ref Expression
rprmval (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Distinct variable groups:   0 ,𝑝   𝐵,𝑝   𝑅,𝑝,𝑥,𝑦   𝑈,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦,𝑝)   · (𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑝)   0 (𝑥,𝑦)

Proof of Theorem rprmval
Dummy variables 𝑏 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rprm 20342 . 2 RPrime = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
2 fvexd 6873 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 simpr 484 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑟))
4 fveq2 6858 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
63, 5eqtrd 2764 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑅))
7 rprmval.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7eqtr4di 2782 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
9 fveq2 6858 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
10 rprmval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
119, 10eqtr4di 2782 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
12 fveq2 6858 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 rprmval.1 . . . . . . . . 9 0 = (0g𝑅)
1412, 13eqtr4di 2782 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514sneqd 4601 . . . . . . 7 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
1611, 15uneq12d 4132 . . . . . 6 (𝑟 = 𝑅 → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
1716adantr 480 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
188, 17difeq12d 4090 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) = (𝐵 ∖ (𝑈 ∪ { 0 })))
19 fvexd 6873 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∥r𝑟) ∈ V)
20 eqidd 2730 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑝 = 𝑝)
21 simpr 484 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑟))
22 fveq2 6858 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
2322ad2antrr 726 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (∥r𝑟) = (∥r𝑅))
2421, 23eqtrd 2764 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑅))
25 rprmval.d . . . . . . . . . 10 = (∥r𝑅)
2624, 25eqtr4di 2782 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = )
27 fveq2 6858 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
28 rprmval.m . . . . . . . . . . . 12 · = (.r𝑅)
2927, 28eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
3029ad2antrr 726 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (.r𝑟) = · )
3130oveqd 7404 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
3220, 26, 31breq123d 5121 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑(𝑥(.r𝑟)𝑦) ↔ 𝑝 (𝑥 · 𝑦)))
3326breqd 5118 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑥𝑝 𝑥))
3426breqd 5118 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑦𝑝 𝑦))
3533, 34orbi12d 918 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑𝑥𝑝𝑑𝑦) ↔ (𝑝 𝑥𝑝 𝑦)))
3632, 35imbi12d 344 . . . . . . 7 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
3719, 36sbcied 3797 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ([(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
388, 37raleqbidv 3319 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
398, 38raleqbidv 3319 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
4018, 39rabeqbidv 3424 . . 3 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → {𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
412, 40csbied 3898 . 2 (𝑟 = 𝑅(Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
42 elex 3468 . 2 (𝑅𝑉𝑅 ∈ V)
437fvexi 6872 . . . . 5 𝐵 ∈ V
4443difexi 5285 . . . 4 (𝐵 ∖ (𝑈 ∪ { 0 })) ∈ V
4544rabex 5294 . . 3 {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V
4645a1i 11 . 2 (𝑅𝑉 → {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V)
471, 41, 42, 46fvmptd3 6991 1 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  [wsbc 3753  csb 3862  cdif 3911  cun 3912  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  rcdsr 20263  Unitcui 20264  RPrimecrpm 20341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-rprm 20342
This theorem is referenced by:  isrprm  33488
  Copyright terms: Public domain W3C validator