Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmval Structured version   Visualization version   GIF version

Theorem rprmval 33509
Description: The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
rprmval.b 𝐵 = (Base‘𝑅)
rprmval.u 𝑈 = (Unit‘𝑅)
rprmval.1 0 = (0g𝑅)
rprmval.m · = (.r𝑅)
rprmval.d = (∥r𝑅)
Assertion
Ref Expression
rprmval (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Distinct variable groups:   0 ,𝑝   𝐵,𝑝   𝑅,𝑝,𝑥,𝑦   𝑈,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦,𝑝)   · (𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑝)   0 (𝑥,𝑦)

Proof of Theorem rprmval
Dummy variables 𝑏 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rprm 20459 . 2 RPrime = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
2 fvexd 6935 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 simpr 484 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑟))
4 fveq2 6920 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
63, 5eqtrd 2780 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = (Base‘𝑅))
7 rprmval.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7eqtr4di 2798 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
9 fveq2 6920 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
10 rprmval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
119, 10eqtr4di 2798 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
12 fveq2 6920 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 rprmval.1 . . . . . . . . 9 0 = (0g𝑅)
1412, 13eqtr4di 2798 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514sneqd 4660 . . . . . . 7 (𝑟 = 𝑅 → {(0g𝑟)} = { 0 })
1611, 15uneq12d 4192 . . . . . 6 (𝑟 = 𝑅 → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
1716adantr 480 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((Unit‘𝑟) ∪ {(0g𝑟)}) = (𝑈 ∪ { 0 }))
188, 17difeq12d 4150 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) = (𝐵 ∖ (𝑈 ∪ { 0 })))
19 fvexd 6935 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∥r𝑟) ∈ V)
20 eqidd 2741 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑝 = 𝑝)
21 simpr 484 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑟))
22 fveq2 6920 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
2322ad2antrr 725 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (∥r𝑟) = (∥r𝑅))
2421, 23eqtrd 2780 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = (∥r𝑅))
25 rprmval.d . . . . . . . . . 10 = (∥r𝑅)
2624, 25eqtr4di 2798 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → 𝑑 = )
27 fveq2 6920 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
28 rprmval.m . . . . . . . . . . . 12 · = (.r𝑅)
2927, 28eqtr4di 2798 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
3029ad2antrr 725 . . . . . . . . . 10 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (.r𝑟) = · )
3130oveqd 7465 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
3220, 26, 31breq123d 5180 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑(𝑥(.r𝑟)𝑦) ↔ 𝑝 (𝑥 · 𝑦)))
3326breqd 5177 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑥𝑝 𝑥))
3426breqd 5177 . . . . . . . . 9 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → (𝑝𝑑𝑦𝑝 𝑦))
3533, 34orbi12d 917 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑𝑥𝑝𝑑𝑦) ↔ (𝑝 𝑥𝑝 𝑦)))
3632, 35imbi12d 344 . . . . . . 7 (((𝑟 = 𝑅𝑏 = (Base‘𝑟)) ∧ 𝑑 = (∥r𝑟)) → ((𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
3719, 36sbcied 3850 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ([(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
388, 37raleqbidv 3354 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
398, 38raleqbidv 3354 . . . 4 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))))
4018, 39rabeqbidv 3462 . . 3 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → {𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
412, 40csbied 3959 . 2 (𝑟 = 𝑅(Base‘𝑟) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑟) ∪ {(0g𝑟)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑟) / 𝑑](𝑝𝑑(𝑥(.r𝑟)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))} = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
42 elex 3509 . 2 (𝑅𝑉𝑅 ∈ V)
437fvexi 6934 . . . . 5 𝐵 ∈ V
4443difexi 5348 . . . 4 (𝐵 ∖ (𝑈 ∪ { 0 })) ∈ V
4544rabex 5357 . . 3 {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V
4645a1i 11 . 2 (𝑅𝑉 → {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))} ∈ V)
471, 41, 42, 46fvmptd3 7052 1 (𝑅𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥𝐵𝑦𝐵 (𝑝 (𝑥 · 𝑦) → (𝑝 𝑥𝑝 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  [wsbc 3804  csb 3921  cdif 3973  cun 3974  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  rcdsr 20380  Unitcui 20381  RPrimecrpm 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-rprm 20459
This theorem is referenced by:  isrprm  33510
  Copyright terms: Public domain W3C validator