| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rpss | Structured version Visualization version GIF version | ||
| Description: Define a relation which corresponds to proper subsethood df-pss 3971 on sets. This allows to use proper subsethood with general concepts that require relations, such as strict ordering, see sorpss 7748. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-rpss | ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crpss 7742 | . 2 class [⊊] | |
| 2 | vx | . . . . 5 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . 4 class 𝑥 |
| 4 | vy | . . . . 5 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . 4 class 𝑦 |
| 6 | 3, 5 | wpss 3952 | . . 3 wff 𝑥 ⊊ 𝑦 |
| 7 | 6, 2, 4 | copab 5205 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
| 8 | 1, 7 | wceq 1540 | 1 wff [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: relrpss 7744 brrpssg 7745 |
| Copyright terms: Public domain | W3C validator |