Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rpss | Structured version Visualization version GIF version |
Description: Define a relation which corresponds to proper subsethood df-pss 3910 on sets. This allows us to use proper subsethood with general concepts that require relations, such as strict ordering, see sorpss 7572. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
df-rpss | ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crpss 7566 | . 2 class [⊊] | |
2 | vx | . . . . 5 setvar 𝑥 | |
3 | 2 | cv 1540 | . . . 4 class 𝑥 |
4 | vy | . . . . 5 setvar 𝑦 | |
5 | 4 | cv 1540 | . . . 4 class 𝑦 |
6 | 3, 5 | wpss 3892 | . . 3 wff 𝑥 ⊊ 𝑦 |
7 | 6, 2, 4 | copab 5140 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
8 | 1, 7 | wceq 1541 | 1 wff [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: relrpss 7568 brrpssg 7569 |
Copyright terms: Public domain | W3C validator |