| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpss | Structured version Visualization version GIF version | ||
| Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| sorpss | ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss 7660 | . . 3 ⊢ [⊊] Po 𝐴 | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) |
| 3 | sspsstri 4055 | . . . 4 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
| 4 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 4 | brrpss 7659 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
| 6 | biid 261 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 7 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 7 | brrpss 7659 | . . . . 5 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
| 9 | 5, 6, 8 | 3orbi123i 1156 | . . . 4 ⊢ ((𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) |
| 10 | 3, 9 | bitr4i 278 | . . 3 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
| 11 | 10 | 2ralbii 3107 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
| 12 | df-so 5525 | . 2 ⊢ ( [⊊] Or 𝐴 ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) | |
| 13 | 2, 11, 12 | 3bitr4ri 304 | 1 ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∀wral 3047 ⊆ wss 3902 ⊊ wpss 3903 class class class wbr 5091 Po wpo 5522 Or wor 5523 [⊊] crpss 7655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-rpss 7656 |
| This theorem is referenced by: sorpsscmpl 7667 enfin2i 10212 fin1a2lem13 10303 |
| Copyright terms: Public domain | W3C validator |