MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpss Structured version   Visualization version   GIF version

Theorem sorpss 7172
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpss ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem sorpss
StepHypRef Expression
1 porpss 7171 . . 3 [] Po 𝐴
21biantrur 522 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
3 sspsstri 3907 . . . 4 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
4 vex 3394 . . . . . 6 𝑦 ∈ V
54brrpss 7170 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
6 biid 252 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
7 vex 3394 . . . . . 6 𝑥 ∈ V
87brrpss 7170 . . . . 5 (𝑦 [] 𝑥𝑦𝑥)
95, 6, 83orbi123i 1188 . . . 4 ((𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
103, 9bitr4i 269 . . 3 ((𝑥𝑦𝑦𝑥) ↔ (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
11102ralbii 3169 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
12 df-so 5233 . 2 ( [] Or 𝐴 ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
132, 11, 123bitr4ri 295 1 ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  wo 865  w3o 1099  wral 3096  wss 3769  wpss 3770   class class class wbr 4844   Po wpo 5230   Or wor 5231   [] crpss 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-br 4845  df-opab 4907  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-rpss 7167
This theorem is referenced by:  sorpsscmpl  7178  enfin2i  9428  fin1a2lem13  9519
  Copyright terms: Public domain W3C validator