MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpss Structured version   Visualization version   GIF version

Theorem sorpss 7494
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpss ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem sorpss
StepHypRef Expression
1 porpss 7493 . . 3 [] Po 𝐴
21biantrur 534 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
3 sspsstri 4003 . . . 4 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
4 vex 3402 . . . . . 6 𝑦 ∈ V
54brrpss 7492 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
6 biid 264 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
7 vex 3402 . . . . . 6 𝑥 ∈ V
87brrpss 7492 . . . . 5 (𝑦 [] 𝑥𝑦𝑥)
95, 6, 83orbi123i 1158 . . . 4 ((𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
103, 9bitr4i 281 . . 3 ((𝑥𝑦𝑦𝑥) ↔ (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
11102ralbii 3079 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
12 df-so 5454 . 2 ( [] Or 𝐴 ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
132, 11, 123bitr4ri 307 1 ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 847  w3o 1088  wral 3051  wss 3853  wpss 3854   class class class wbr 5039   Po wpo 5451   Or wor 5452   [] crpss 7488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-rpss 7489
This theorem is referenced by:  sorpsscmpl  7500  enfin2i  9900  fin1a2lem13  9991
  Copyright terms: Public domain W3C validator