Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sorpss | Structured version Visualization version GIF version |
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpss | ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | porpss 7558 | . . 3 ⊢ [⊊] Po 𝐴 | |
2 | 1 | biantrur 530 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) |
3 | sspsstri 4033 | . . . 4 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
4 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 4 | brrpss 7557 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
6 | biid 260 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
7 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7 | brrpss 7557 | . . . . 5 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
9 | 5, 6, 8 | 3orbi123i 1154 | . . . 4 ⊢ ((𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) |
10 | 3, 9 | bitr4i 277 | . . 3 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
11 | 10 | 2ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
12 | df-so 5495 | . 2 ⊢ ( [⊊] Or 𝐴 ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) | |
13 | 2, 11, 12 | 3bitr4ri 303 | 1 ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 ∀wral 3063 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 Po wpo 5492 Or wor 5493 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: sorpsscmpl 7565 enfin2i 10008 fin1a2lem13 10099 |
Copyright terms: Public domain | W3C validator |