MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpss Structured version   Visualization version   GIF version

Theorem sorpss 7670
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpss ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem sorpss
StepHypRef Expression
1 porpss 7669 . . 3 [] Po 𝐴
21biantrur 532 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
3 sspsstri 4067 . . . 4 ((𝑥𝑦𝑦𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
4 vex 3452 . . . . . 6 𝑦 ∈ V
54brrpss 7668 . . . . 5 (𝑥 [] 𝑦𝑥𝑦)
6 biid 261 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
7 vex 3452 . . . . . 6 𝑥 ∈ V
87brrpss 7668 . . . . 5 (𝑦 [] 𝑥𝑦𝑥)
95, 6, 83orbi123i 1157 . . . 4 ((𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
103, 9bitr4i 278 . . 3 ((𝑥𝑦𝑦𝑥) ↔ (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
11102ralbii 3128 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥))
12 df-so 5551 . 2 ( [] Or 𝐴 ↔ ( [] Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 [] 𝑦𝑥 = 𝑦𝑦 [] 𝑥)))
132, 11, 123bitr4ri 304 1 ( [] Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wo 846  w3o 1087  wral 3065  wss 3915  wpss 3916   class class class wbr 5110   Po wpo 5548   Or wor 5549   [] crpss 7664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-rpss 7665
This theorem is referenced by:  sorpsscmpl  7676  enfin2i  10264  fin1a2lem13  10355
  Copyright terms: Public domain W3C validator