| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpss | Structured version Visualization version GIF version | ||
| Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| sorpss | ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss 7703 | . . 3 ⊢ [⊊] Po 𝐴 | |
| 2 | 1 | biantrur 530 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) |
| 3 | sspsstri 4068 | . . . 4 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) | |
| 4 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 4 | brrpss 7702 | . . . . 5 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
| 6 | biid 261 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 7 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 7 | brrpss 7702 | . . . . 5 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
| 9 | 5, 6, 8 | 3orbi123i 1156 | . . . 4 ⊢ ((𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥) ↔ (𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥)) |
| 10 | 3, 9 | bitr4i 278 | . . 3 ⊢ ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
| 11 | 10 | 2ralbii 3108 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥)) |
| 12 | df-so 5547 | . 2 ⊢ ( [⊊] Or 𝐴 ↔ ( [⊊] Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 [⊊] 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 [⊊] 𝑥))) | |
| 13 | 2, 11, 12 | 3bitr4ri 304 | 1 ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∀wral 3044 ⊆ wss 3914 ⊊ wpss 3915 class class class wbr 5107 Po wpo 5544 Or wor 5545 [⊊] crpss 7698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-rpss 7699 |
| This theorem is referenced by: sorpsscmpl 7710 enfin2i 10274 fin1a2lem13 10365 |
| Copyright terms: Public domain | W3C validator |