![]() |
Metamath
Proof Explorer Theorem List (p. 78 of 475) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30034) |
![]() (30035-31557) |
![]() (31558-47498) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sorpss 7701* | Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
Theorem | sorpssi 7702 | Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | ||
Theorem | sorpssun 7703 | A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
Theorem | sorpssin 7704 | A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) | ||
Theorem | sorpssuni 7705* | In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌)) | ||
Theorem | sorpssint 7706* | In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌)) | ||
Theorem | sorpsscmpl 7707* | The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → [⊊] Or {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) | ||
Axiom | ax-un 7708* |
Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states
that a set 𝑦 exists that includes the union of a
given set 𝑥
i.e. the collection of all members of the members of 𝑥. The
variant axun2 7710 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 7711. A version using class
notation is uniex 7714.
The union of a class df-uni 4902 should not be confused with the union of two classes df-un 3949. Their relationship is shown in unipr 4919. (Contributed by NM, 23-Dec-1993.) |
⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfun 7709* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7708 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axun2 7710* | A variant of the Axiom of Union ax-un 7708. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
Theorem | uniex2 7711* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
Theorem | vuniex 7712 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
⊢ ∪ 𝑥 ∈ V | ||
Theorem | uniexg 7713 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
Theorem | uniex 7714 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3486), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
Theorem | uniexd 7715 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
Theorem | unex 7716 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
Theorem | tpex 7717 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} ∈ V | ||
Theorem | unexb 7718 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | unexg 7719 | A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | xpexg 7720 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7950. (Contributed by NM, 14-Aug-1994.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
Theorem | xpexd 7721 | The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | ||
Theorem | 3xpexg 7722 | The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) | ||
Theorem | xpex 7723 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × 𝐵) ∈ V | ||
Theorem | unexd 7724 | The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | sqxpexg 7725 | The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | ||
Theorem | abnexg 7726* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7929. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7728 and pwnex 7729 respectively, proved from abnex 7727, which is a consequence of abnexg 7726 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
Theorem | abnex 7727* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7728 and pwnex 7729. See the comment of abnexg 7726. (Contributed by BJ, 2-May-2021.) |
⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
Theorem | snnex 7728* | The class of all singletons is a proper class. See also pwnex 7729. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
Theorem | pwnex 7729* | The class of all power sets is a proper class. See also snnex 7728. (Contributed by BJ, 2-May-2021.) |
⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
Theorem | difex2 7730 | If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) | ||
Theorem | difsnexi 7731 | If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | ||
Theorem | uniuni 7732* | Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007.) |
⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
Theorem | uniexr 7733 | Converse of the Axiom of Union. Note that it does not require ax-un 7708. (Contributed by NM, 11-Nov-2003.) |
⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
Theorem | uniexb 7734 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
Theorem | pwexr 7735 | Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5356. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
Theorem | pwexb 7736 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
Theorem | elpwpwel 7737 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | eldifpw 7738 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
Theorem | elpwun 7739 | Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) | ||
Theorem | pwuncl 7740 | Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) | ||
Theorem | iunpw 7741* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
Theorem | fr3nr 7742 | A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
Theorem | epne3 7743 | A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) | ||
Theorem | dfwe2 7744* | Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | epweon 7745 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7708, see epweonALT 7746. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7708. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ E We On | ||
Theorem | epweonALT 7746 | Alternate proof of epweon 7745, shorter but requiring ax-un 7708. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ E We On | ||
Theorem | ordon 7747 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
⊢ Ord On | ||
Theorem | onprc 7748 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7747), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
⊢ ¬ On ∈ V | ||
Theorem | ssorduni 7749 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
Theorem | ssonuni 7750 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
Theorem | ssonunii 7751 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
Theorem | ordeleqon 7752 | A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | ||
Theorem | ordsson 7753 | Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (Ord 𝐴 → 𝐴 ⊆ On) | ||
Theorem | dford5 7754 | A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) | ||
Theorem | onss 7755 | An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | ||
Theorem | predon 7756 | The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
Theorem | predonOLD 7757 | Obsolete version of predon 7756 as of 16-Oct-2024. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
Theorem | ssonprc 7758 | Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) | ||
Theorem | onuni 7759 | The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | ||
Theorem | orduni 7760 | The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
⊢ (Ord 𝐴 → Ord ∪ 𝐴) | ||
Theorem | onint 7761 | The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | ||
Theorem | onint0 7762 | The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) | ||
Theorem | onssmin 7763* | A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) | ||
Theorem | onminesb 7764 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.) |
⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) | ||
Theorem | onminsb 7765 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) | ||
Theorem | oninton 7766 | The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | ||
Theorem | onintrab 7767 | The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
Theorem | onintrab2 7768 | An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
Theorem | onnmin 7769 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
Theorem | onnminsb 7770* | An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) | ||
Theorem | oneqmin 7771* | A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | ||
Theorem | uniordint 7772* | The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
Theorem | onminex 7773* | If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) | ||
Theorem | sucon 7774 | The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
⊢ suc On = On | ||
Theorem | sucexb 7775 | A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | ||
Theorem | sucexg 7776 | The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
Theorem | sucex 7777 | The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
Theorem | onmindif2 7778 | The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ ∩ (𝐴 ∖ {∩ 𝐴})) | ||
Theorem | ordsuci 7779 | The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7782. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
⊢ (Ord 𝐴 → Ord suc 𝐴) | ||
Theorem | sucexeloni 7780 | If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7782 does not require ax-un 7708. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
Theorem | sucexeloniOLD 7781 | Obsolete version of sucexeloni 7780 as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
Theorem | onsuc 7782 | The successor of an ordinal number is an ordinal number. Closed form of onsuci 7810. Forward implication of onsucb 7788. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
Theorem | suceloniOLD 7783 | Obsolete version of onsuc 7782 as of 30-Nov-2024. (Contributed by NM, 6-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
Theorem | ordsuc 7784 | A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7708. (Revised by BTernaryTau, 6-Jan-2025.) |
⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
Theorem | ordsucOLD 7785 | Obsolete version of ordsuc 7784 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
Theorem | ordpwsuc 7786 | The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
Theorem | onpwsuc 7787 | The collection of ordinal numbers in the power set of an ordinal number is its successor. (Contributed by NM, 19-Oct-2004.) |
⊢ (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
Theorem | onsucb 7788 | A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7782. (Contributed by NM, 9-Sep-2003.) |
⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | ||
Theorem | ordsucss 7789 | The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | ||
Theorem | onpsssuc 7790 | An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) | ||
Theorem | ordelsuc 7791 | A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | ||
Theorem | onsucmin 7792* | The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) | ||
Theorem | ordsucelsuc 7793 | Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) | ||
Theorem | ordsucsssuc 7794 | The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | ||
Theorem | ordsucuniel 7795 | Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | ||
Theorem | ordsucun 7796 | The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) | ||
Theorem | ordunpr 7797 | The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | ||
Theorem | ordunel 7798 | The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
Theorem | onsucuni 7799 | A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | ||
Theorem | ordsucuni 7800 | An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |