| Metamath
Proof Explorer Theorem List (p. 78 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brrpssg 7701 | The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
| Theorem | brrpss 7702 | The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) | ||
| Theorem | porpss 7703 | Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ [⊊] Po 𝐴 | ||
| Theorem | sorpss 7704* | Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | sorpssi 7705 | Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | ||
| Theorem | sorpssun 7706 | A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
| ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
| Theorem | sorpssin 7707 | A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
| ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) | ||
| Theorem | sorpssuni 7708* | In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌)) | ||
| Theorem | sorpssint 7709* | In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌)) | ||
| Theorem | sorpsscmpl 7710* | The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ( [⊊] Or 𝑌 → [⊊] Or {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) | ||
| Axiom | ax-un 7711* |
Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states
that a set 𝑦 exists that includes the union of a
given set 𝑥
i.e. the collection of all members of the members of 𝑥. The
variant axun2 7713 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 7714. A version using class
notation is uniex 7717.
The union of a class df-uni 4872 should not be confused with the union of two classes df-un 3919. Their relationship is shown in unipr 4888. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfun 7712* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7711 instead. (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axun2 7713* | A variant of the Axiom of Union ax-un 7711. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
| Theorem | uniex2 7714* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
| Theorem | vuniex 7715 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
| ⊢ ∪ 𝑥 ∈ V | ||
| Theorem | uniexg 7716 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
| Theorem | uniex 7717 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3461), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
| Theorem | uniexd 7718 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
| Theorem | unexg 7719 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) Prove unexg 7719 first and then unex 7720 and unexb 7723 from it. (Revised by BJ, 21-Jul-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unex 7720 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | unexOLD 7721 | Obsolete version of unex 7720 as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | tpex 7722 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| ⊢ {𝐴, 𝐵, 𝐶} ∈ V | ||
| Theorem | unexb 7723 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unexbOLD 7724 | Obsolete version of unexb 7723 as of 21-Jul-2025. (Contributed by NM, 11-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | unexgOLD 7725 | Obsolete version of unexg 7719 as of 21-Jul-2025. (Contributed by NM, 18-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | xpexg 7726 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7960. (Contributed by NM, 14-Aug-1994.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
| Theorem | xpexd 7727 | The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | ||
| Theorem | 3xpexg 7728 | The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.) |
| ⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) | ||
| Theorem | xpex 7729 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × 𝐵) ∈ V | ||
| Theorem | unexd 7730 | The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | sqxpexg 7731 | The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | ||
| Theorem | abnexg 7732* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7939. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7734 and pwnex 7735 respectively, proved from abnex 7733, which is a consequence of abnexg 7732 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
| Theorem | abnex 7733* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7734 and pwnex 7735. See the comment of abnexg 7732. (Contributed by BJ, 2-May-2021.) |
| ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
| Theorem | snnex 7734* | The class of all singletons is a proper class. See also pwnex 7735. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
| Theorem | pwnex 7735* | The class of all power sets is a proper class. See also snnex 7734. (Contributed by BJ, 2-May-2021.) |
| ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
| Theorem | difex2 7736 | If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) | ||
| Theorem | difsnexi 7737 | If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | ||
| Theorem | uniuni 7738* | Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007.) |
| ⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | uniexr 7739 | Converse of the Axiom of Union. Note that it does not require ax-un 7711. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | uniexb 7740 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
| Theorem | pwexr 7741 | Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5320. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | pwexb 7742 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
| Theorem | elpwpwel 7743 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
| Theorem | eldifpw 7744 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
| Theorem | elpwun 7745 | Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) | ||
| Theorem | pwuncl 7746 | Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
| ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) | ||
| Theorem | iunpw 7747* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
| Theorem | fr3nr 7748 | A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
| Theorem | epne3 7749 | A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) | ||
| Theorem | dfwe2 7750* | Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | epweon 7751 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7711, see epweonALT 7752. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7711. (Revised by BTernaryTau, 30-Nov-2024.) |
| ⊢ E We On | ||
| Theorem | epweonALT 7752 | Alternate proof of epweon 7751, shorter but requiring ax-un 7711. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ E We On | ||
| Theorem | ordon 7753 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ Ord On | ||
| Theorem | onprc 7754 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7753), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| ⊢ ¬ On ∈ V | ||
| Theorem | ssorduni 7755 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
| Theorem | ssonuni 7756 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
| Theorem | ssonunii 7757 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
| Theorem | ordeleqon 7758 | A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | ||
| Theorem | ordsson 7759 | Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | ||
| Theorem | dford5 7760 | A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) | ||
| Theorem | onss 7761 | An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | ||
| Theorem | predon 7762 | The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
| Theorem | ssonprc 7763 | Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) | ||
| Theorem | onuni 7764 | The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | ||
| Theorem | orduni 7765 | The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | ||
| Theorem | onint 7766 | The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | ||
| Theorem | onint0 7767 | The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) | ||
| Theorem | onssmin 7768* | A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) | ||
| Theorem | onminesb 7769 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) | ||
| Theorem | onminsb 7770 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) | ||
| Theorem | oninton 7771 | The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | ||
| Theorem | onintrab 7772 | The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onintrab2 7773 | An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onnmin 7774 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
| Theorem | onnminsb 7775* | An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) | ||
| Theorem | oneqmin 7776* | A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | ||
| Theorem | uniordint 7777* | The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onminex 7778* | If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) | ||
| Theorem | sucon 7779 | The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
| ⊢ suc On = On | ||
| Theorem | sucexb 7780 | A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | ||
| Theorem | sucexg 7781 | The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
| Theorem | sucex 7782 | The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
| Theorem | onmindif2 7783 | The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ ∩ (𝐴 ∖ {∩ 𝐴})) | ||
| Theorem | ordsuci 7784 | The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7787. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ (Ord 𝐴 → Ord suc 𝐴) | ||
| Theorem | sucexeloni 7785 | If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7787 does not require ax-un 7711. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
| Theorem | sucexeloniOLD 7786 | Obsolete version of sucexeloni 7785 as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
| Theorem | onsuc 7787 | The successor of an ordinal number is an ordinal number. Closed form of onsuci 7814. Forward implication of onsucb 7792. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
| Theorem | ordsuc 7788 | A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7711. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | ordsucOLD 7789 | Obsolete version of ordsuc 7788 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | ordpwsuc 7790 | The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onpwsuc 7791 | The collection of ordinal numbers in the power set of an ordinal number is its successor. (Contributed by NM, 19-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onsucb 7792 | A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7787. (Contributed by NM, 9-Sep-2003.) |
| ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | ||
| Theorem | ordsucss 7793 | The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onpsssuc 7794 | An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) | ||
| Theorem | ordelsuc 7795 | A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onsucmin 7796* | The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) | ||
| Theorem | ordsucelsuc 7797 | Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) | ||
| Theorem | ordsucsssuc 7798 | The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | ordsucuniel 7799 | Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | ||
| Theorem | ordsucun 7800 | The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |