| Metamath
Proof Explorer Theorem List (p. 78 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | difsnexi 7701 | If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
| ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | ||
| Theorem | uniuni 7702* | Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007.) |
| ⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | uniexr 7703 | Converse of the Axiom of Union. Note that it does not require ax-un 7675. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | uniexb 7704 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
| Theorem | pwexr 7705 | Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5307. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | pwexb 7706 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
| Theorem | elpwpwel 7707 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
| Theorem | eldifpw 7708 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
| Theorem | elpwun 7709 | Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) | ||
| Theorem | pwuncl 7710 | Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
| ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) | ||
| Theorem | iunpw 7711* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
| Theorem | fr3nr 7712 | A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
| Theorem | epne3 7713 | A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) | ||
| Theorem | dfwe2 7714* | Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | epweon 7715 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7675, see epweonALT 7716. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7675. (Revised by BTernaryTau, 30-Nov-2024.) |
| ⊢ E We On | ||
| Theorem | epweonALT 7716 | Alternate proof of epweon 7715, shorter but requiring ax-un 7675. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ E We On | ||
| Theorem | ordon 7717 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ Ord On | ||
| Theorem | onprc 7718 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7717), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| ⊢ ¬ On ∈ V | ||
| Theorem | ssorduni 7719 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
| Theorem | ssonuni 7720 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
| Theorem | ssonunii 7721 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
| Theorem | ordeleqon 7722 | A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | ||
| Theorem | ordsson 7723 | Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | ||
| Theorem | dford5 7724 | A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) | ||
| Theorem | onss 7725 | An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | ||
| Theorem | predon 7726 | The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
| Theorem | ssonprc 7727 | Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) | ||
| Theorem | onuni 7728 | The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | ||
| Theorem | orduni 7729 | The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | ||
| Theorem | onint 7730 | The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | ||
| Theorem | onint0 7731 | The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) | ||
| Theorem | onssmin 7732* | A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) | ||
| Theorem | onminesb 7733 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) | ||
| Theorem | onminsb 7734 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) | ||
| Theorem | oninton 7735 | The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | ||
| Theorem | onintrab 7736 | The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onintrab2 7737 | An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onnmin 7738 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
| Theorem | onnminsb 7739* | An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) | ||
| Theorem | oneqmin 7740* | A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | ||
| Theorem | uniordint 7741* | The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onminex 7742* | If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) | ||
| Theorem | sucon 7743 | The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
| ⊢ suc On = On | ||
| Theorem | sucexb 7744 | A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | ||
| Theorem | sucexg 7745 | The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
| Theorem | sucex 7746 | The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
| Theorem | onmindif2 7747 | The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ ∩ (𝐴 ∖ {∩ 𝐴})) | ||
| Theorem | ordsuci 7748 | The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7751. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ (Ord 𝐴 → Ord suc 𝐴) | ||
| Theorem | sucexeloni 7749 | If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7751 does not require ax-un 7675. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
| Theorem | sucexeloniOLD 7750 | Obsolete version of sucexeloni 7749 as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
| Theorem | onsuc 7751 | The successor of an ordinal number is an ordinal number. Closed form of onsuci 7778. Forward implication of onsucb 7756. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
| Theorem | ordsuc 7752 | A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7675. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | ordsucOLD 7753 | Obsolete version of ordsuc 7752 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | ordpwsuc 7754 | The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onpwsuc 7755 | The collection of ordinal numbers in the power set of an ordinal number is its successor. (Contributed by NM, 19-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onsucb 7756 | A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7751. (Contributed by NM, 9-Sep-2003.) |
| ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | ||
| Theorem | ordsucss 7757 | The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onpsssuc 7758 | An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) | ||
| Theorem | ordelsuc 7759 | A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onsucmin 7760* | The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) | ||
| Theorem | ordsucelsuc 7761 | Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) | ||
| Theorem | ordsucsssuc 7762 | The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | ordsucuniel 7763 | Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | ||
| Theorem | ordsucun 7764 | The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) | ||
| Theorem | ordunpr 7765 | The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | ||
| Theorem | ordunel 7766 | The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
| Theorem | onsucuni 7767 | A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | ordsucuni 7768 | An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | orduniorsuc 7769 | An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | unon 7770 | The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| ⊢ ∪ On = On | ||
| Theorem | ordunisuc 7771 | An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | ||
| Theorem | orduniss2 7772* | The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) | ||
| Theorem | onsucuni2 7773 | A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪ 𝐴 = 𝐴) | ||
| Theorem | 0elsuc 7774 | The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) | ||
| Theorem | limon 7775 | The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| ⊢ Lim On | ||
| Theorem | onuniorsuc 7776 | An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | onssi 7777 | An ordinal number is a subset of On. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ 𝐴 ⊆ On | ||
| Theorem | onsuci 7778 | The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7751 and onsucb 7756. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ suc 𝐴 ∈ On | ||
| Theorem | onuniorsuciOLD 7779 | Obsolete version of onuniorsuc 7776 as of 11-Jan-2025. (Contributed by NM, 13-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) | ||
| Theorem | onuninsuci 7780* | An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc 7783. (Contributed by NM, 18-Feb-2004.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
| Theorem | onsucssi 7781 | A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) | ||
| Theorem | nlimsucg 7782 | A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) | ||
| Theorem | orduninsuc 7783* | An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci 7780. (Contributed by NM, 18-Feb-2004.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | ||
| Theorem | ordunisuc2 7784* | An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | ordzsl 7785* | An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | ||
| Theorem | onzsl 7786* | An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | ||
| Theorem | dflim3 7787* | An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | ||
| Theorem | dflim4 7788* | An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | limsuc 7789 | The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
| Theorem | limsssuc 7790 | A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (Lim 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | nlimon 7791* | Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
| ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} | ||
| Theorem | limuni3 7792* | The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 Lim 𝑥) → Lim ∪ 𝐴) | ||
| Theorem | tfi 7793* |
The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if 𝐴 is a class of ordinal
numbers with the property that every ordinal number included in 𝐴
also belongs to 𝐴, then every ordinal number is in
𝐴.
See Theorem tfindes 7803 or tfinds 7800 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) | ||
| Theorem | tfisg 7794* | A closed form of tfis 7795. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥 ∈ On 𝜑) | ||
| Theorem | tfis 7795* | Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2f 7796* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2 7797* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis3 7798* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜒) | ||
| Theorem | tfisi 7799* | A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ On) & ⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | tfinds 7800* | Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ On → (𝜒 → 𝜃)) & ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜏) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |