| Metamath
Proof Explorer Theorem List (p. 78 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uniuni 7701* | Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007.) |
| ⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
| Theorem | uniexr 7702 | Converse of the Axiom of Union. Note that it does not require ax-un 7674. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | uniexb 7703 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
| Theorem | pwexr 7704 | Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5305. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | pwexb 7705 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
| Theorem | elpwpwel 7706 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
| Theorem | eldifpw 7707 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
| Theorem | elpwun 7708 | Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) | ||
| Theorem | pwuncl 7709 | Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
| ⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) | ||
| Theorem | iunpw 7710* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
| Theorem | fr3nr 7711 | A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
| Theorem | epne3 7712 | A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) | ||
| Theorem | dfwe2 7713* | Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | epweon 7714 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. For a shorter proof requiring ax-un 7674, see epweonALT 7715. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7674. (Revised by BTernaryTau, 30-Nov-2024.) |
| ⊢ E We On | ||
| Theorem | epweonALT 7715 | Alternate proof of epweon 7714, shorter but requiring ax-un 7674. (Contributed by NM, 1-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ E We On | ||
| Theorem | ordon 7716 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| ⊢ Ord On | ||
| Theorem | onprc 7717 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7716), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| ⊢ ¬ On ∈ V | ||
| Theorem | ssorduni 7718 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
| Theorem | ssonuni 7719 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
| Theorem | ssonunii 7720 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
| Theorem | ordeleqon 7721 | A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | ||
| Theorem | ordsson 7722 | Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | ||
| Theorem | dford5 7723 | A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) | ||
| Theorem | onss 7724 | An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | ||
| Theorem | predon 7725 | The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
| Theorem | ssonprc 7726 | Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) | ||
| Theorem | onuni 7727 | The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | ||
| Theorem | orduni 7728 | The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → Ord ∪ 𝐴) | ||
| Theorem | onint 7729 | The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of [TakeutiZaring] p. 45. (Contributed by NM, 31-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | ||
| Theorem | onint0 7730 | The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ⊆ On → (∩ 𝐴 = ∅ ↔ ∅ ∈ 𝐴)) | ||
| Theorem | onssmin 7731* | A nonempty class of ordinal numbers has the smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) | ||
| Theorem | onminesb 7732 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 29-Sep-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 → [∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑) | ||
| Theorem | onminsb 7733 | If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝜑} → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → 𝜓) | ||
| Theorem | oninton 7734 | The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | ||
| Theorem | onintrab 7735 | The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onintrab2 7736 | An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| ⊢ (∃𝑥 ∈ On 𝜑 ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | ||
| Theorem | onnmin 7737 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
| Theorem | onnminsb 7738* | An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) | ||
| Theorem | oneqmin 7739* | A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | ||
| Theorem | uniordint 7740* | The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onminex 7741* | If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) | ||
| Theorem | sucon 7742 | The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
| ⊢ suc On = On | ||
| Theorem | sucexb 7743 | A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | ||
| Theorem | sucexg 7744 | The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
| Theorem | sucex 7745 | The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
| Theorem | onmindif2 7746 | The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ ∩ (𝐴 ∖ {∩ 𝐴})) | ||
| Theorem | ordsuci 7747 | The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7749. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ (Ord 𝐴 → Ord suc 𝐴) | ||
| Theorem | sucexeloni 7748 | If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc 7749 does not require ax-un 7674. (Contributed by BTernaryTau, 30-Nov-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
| Theorem | onsuc 7749 | The successor of an ordinal number is an ordinal number. Closed form of onsuci 7775. Forward implication of onsucb 7753. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
| Theorem | ordsuc 7750 | A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7674. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | ordpwsuc 7751 | The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onpwsuc 7752 | The collection of ordinal numbers in the power set of an ordinal number is its successor. (Contributed by NM, 19-Oct-2004.) |
| ⊢ (𝐴 ∈ On → (𝒫 𝐴 ∩ On) = suc 𝐴) | ||
| Theorem | onsucb 7753 | A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7749. (Contributed by NM, 9-Sep-2003.) |
| ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | ||
| Theorem | ordsucss 7754 | The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of [Schloeder] p. 2. (Contributed by NM, 21-Jun-1998.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onpsssuc 7755 | An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) | ||
| Theorem | ordelsuc 7756 | A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | ||
| Theorem | onsucmin 7757* | The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) | ||
| Theorem | ordsucelsuc 7758 | Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) | ||
| Theorem | ordsucsssuc 7759 | The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | ordsucuniel 7760 | Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | ||
| Theorem | ordsucun 7761 | The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) | ||
| Theorem | ordunpr 7762 | The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | ||
| Theorem | ordunel 7763 | The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
| Theorem | onsucuni 7764 | A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | ordsucuni 7765 | An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | orduniorsuc 7766 | An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | unon 7767 | The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| ⊢ ∪ On = On | ||
| Theorem | ordunisuc 7768 | An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | ||
| Theorem | orduniss2 7769* | The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) | ||
| Theorem | onsucuni2 7770 | A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪ 𝐴 = 𝐴) | ||
| Theorem | 0elsuc 7771 | The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) | ||
| Theorem | limon 7772 | The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| ⊢ Lim On | ||
| Theorem | onuniorsuc 7773 | An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | onssi 7774 | An ordinal number is a subset of On. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ 𝐴 ⊆ On | ||
| Theorem | onsuci 7775 | The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7749 and onsucb 7753. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ suc 𝐴 ∈ On | ||
| Theorem | onuninsuci 7776* | An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc 7779. (Contributed by NM, 18-Feb-2004.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
| Theorem | onsucssi 7777 | A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) | ||
| Theorem | nlimsucg 7778 | A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) | ||
| Theorem | orduninsuc 7779* | An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci 7776. (Contributed by NM, 18-Feb-2004.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | ||
| Theorem | ordunisuc2 7780* | An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | ordzsl 7781* | An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | ||
| Theorem | onzsl 7782* | An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | ||
| Theorem | dflim3 7783* | An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | ||
| Theorem | dflim4 7784* | An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | limsuc 7785 | The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
| Theorem | limsssuc 7786 | A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (Lim 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | nlimon 7787* | Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
| ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} | ||
| Theorem | limuni3 7788* | The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 Lim 𝑥) → Lim ∪ 𝐴) | ||
| Theorem | tfi 7789* |
The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if 𝐴 is a class of ordinal
numbers with the property that every ordinal number included in 𝐴
also belongs to 𝐴, then every ordinal number is in
𝐴.
See Theorem tfindes 7799 or tfinds 7796 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) | ||
| Theorem | tfisg 7790* | A closed form of tfis 7791. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥 ∈ On 𝜑) | ||
| Theorem | tfis 7791* | Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2f 7792* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2 7793* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis3 7794* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜒) | ||
| Theorem | tfisi 7795* | A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ On) & ⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | tfinds 7796* | Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ On → (𝜒 → 𝜃)) & ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜏) | ||
| Theorem | tfindsg 7797* | Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal 𝐵 instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ On → 𝜓) & ⊢ (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝑦) → (𝜒 → 𝜃)) & ⊢ (((Lim 𝑥 ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝐵 ⊆ 𝑦 → 𝜒) → 𝜑)) ⇒ ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → 𝜏) | ||
| Theorem | tfindsg2 7798* | Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Contributed by NM, 5-Jan-2005.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = suc 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ On → 𝜓) & ⊢ ((𝑦 ∈ On ∧ 𝐵 ∈ 𝑦) → (𝜒 → 𝜃)) & ⊢ ((Lim 𝑥 ∧ 𝐵 ∈ 𝑥) → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → 𝜒) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝜏) | ||
| Theorem | tfindes 7799* | Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
| ⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) & ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfinds2 7800* | Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of [Suppes] p. 197. The wff 𝜏 is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ On → (𝜏 → (𝜒 → 𝜃))) & ⊢ (Lim 𝑥 → (𝜏 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) ⇒ ⊢ (𝑥 ∈ On → (𝜏 → 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |