Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 28312). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4006). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3875). Other possible definitions are given by dfpss2 3991 and dfpss3 3992. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3859 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3858 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2951 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 399 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 209 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 3991 psseq1 3993 psseq2 3994 pssss 4001 pssne 4002 nssinpss 4161 pssdif 4265 0pss 4341 difsnpss 4697 ordelpss 6197 fisseneq 8767 ominf 8768 f1finf1o 8782 fofinf1o 8832 inf3lem2 9125 inf3lem4 9127 infeq5 9133 fin23lem31 9803 isf32lem6 9818 ipolt 17835 lssnle 18867 pgpfaclem2 19272 lspsncv0 19986 islbs3 19995 lbsextlem4 20001 lidlnz 20069 filssufilg 22611 alexsubALTlem4 22750 ppiltx 25861 ex-pss 28312 ch0pss 29327 nepss 33180 dfon2 33284 relowlpssretop 35061 finxpreclem3 35090 fin2solem 35323 lshpnelb 36560 lshpcmp 36564 lsatssn0 36578 lcvbr3 36599 lsatcv0 36607 lsat0cv 36609 lcvexchlem1 36610 islshpcv 36629 lkrpssN 36739 lkreqN 36746 osumcllem11N 37542 pexmidlem8N 37553 dochsordN 38950 dochsat 38959 dochshpncl 38960 dochexmidlem8 39043 mapdsord 39231 psspwb 39708 xppss12 39709 trelpss 41532 isomenndlem 43535 lvecpsslmod 45281 |
Copyright terms: Public domain | W3C validator |