| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version | ||
| Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30357). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4066). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3931). Other possible definitions are given by dfpss2 4051 and dfpss3 4052. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wpss 3915 | . 2 wff 𝐴 ⊊ 𝐵 |
| 4 | 1, 2 | wss 3914 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 5 | 1, 2 | wne 2925 | . . 3 wff 𝐴 ≠ 𝐵 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
| 7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpss2 4051 psseq1 4053 psseq2 4054 pssss 4061 pssne 4062 nssinpss 4230 pssdif 4332 0pss 4410 difsnpss 4771 ordelpss 6360 fisseneq 9204 ominf 9205 ominfOLD 9206 f1finf1o 9216 f1finf1oOLD 9217 fofinf1o 9283 inf3lem2 9582 inf3lem4 9584 infeq5 9590 fin23lem31 10296 isf32lem6 10311 ipolt 18494 lssnle 19604 pgpfaclem2 20014 lspsncv0 21056 islbs3 21065 lbsextlem4 21071 lidlnz 21152 filssufilg 23798 alexsubALTlem4 23937 ppiltx 27087 ex-pss 30357 ch0pss 31374 exsslsb 33592 nepss 35705 dfon2 35780 relowlpssretop 37352 finxpreclem3 37381 fin2solem 37600 lshpnelb 38977 lshpcmp 38981 lsatssn0 38995 lcvbr3 39016 lsatcv0 39024 lsat0cv 39026 lcvexchlem1 39027 islshpcv 39046 lkrpssN 39156 lkreqN 39163 osumcllem11N 39960 pexmidlem8N 39971 dochsordN 41368 dochsat 41377 dochshpncl 41378 dochexmidlem8 41461 mapdsord 41649 psspwb 42216 xppss12 42217 omssrncard 43529 trelpss 44444 isomenndlem 46528 lvecpsslmod 48496 |
| Copyright terms: Public domain | W3C validator |