![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 29712). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4101). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3966). Other possible definitions are given by dfpss2 4086 and dfpss3 4087. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3950 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3949 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2941 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 397 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 205 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 4086 psseq1 4088 psseq2 4089 pssss 4096 pssne 4097 nssinpss 4257 pssdif 4367 0pss 4445 difsnpss 4811 ordelpss 6393 fisseneq 9257 ominf 9258 ominfOLD 9259 f1finf1o 9271 f1finf1oOLD 9272 fofinf1o 9327 inf3lem2 9624 inf3lem4 9626 infeq5 9632 fin23lem31 10338 isf32lem6 10353 ipolt 18488 lssnle 19542 pgpfaclem2 19952 lspsncv0 20759 islbs3 20768 lbsextlem4 20774 lidlnz 20853 filssufilg 23415 alexsubALTlem4 23554 ppiltx 26681 ex-pss 29712 ch0pss 30729 nepss 34718 dfon2 34795 relowlpssretop 36293 finxpreclem3 36322 fin2solem 36522 lshpnelb 37902 lshpcmp 37906 lsatssn0 37920 lcvbr3 37941 lsatcv0 37949 lsat0cv 37951 lcvexchlem1 37952 islshpcv 37971 lkrpssN 38081 lkreqN 38088 osumcllem11N 38885 pexmidlem8N 38896 dochsordN 40293 dochsat 40302 dochshpncl 40303 dochexmidlem8 40386 mapdsord 40574 psspwb 41094 xppss12 41095 omssrncard 42339 trelpss 43262 isomenndlem 45294 lvecpsslmod 47236 |
Copyright terms: Public domain | W3C validator |