| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version | ||
| Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30372). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4054). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3920). Other possible definitions are given by dfpss2 4039 and dfpss3 4040. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wpss 3904 | . 2 wff 𝐴 ⊊ 𝐵 |
| 4 | 1, 2 | wss 3903 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 5 | 1, 2 | wne 2925 | . . 3 wff 𝐴 ≠ 𝐵 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
| 7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpss2 4039 psseq1 4041 psseq2 4042 pssss 4049 pssne 4050 nssinpss 4218 pssdif 4320 0pss 4398 difsnpss 4758 ordelpss 6335 fisseneq 9152 ominf 9153 f1finf1o 9162 fofinf1o 9222 inf3lem2 9525 inf3lem4 9527 infeq5 9533 fin23lem31 10237 isf32lem6 10252 ipolt 18441 lssnle 19553 pgpfaclem2 19963 lspsncv0 21053 islbs3 21062 lbsextlem4 21068 lidlnz 21149 filssufilg 23796 alexsubALTlem4 23935 ppiltx 27085 ex-pss 30372 ch0pss 31389 exsslsb 33569 nepss 35701 dfon2 35776 relowlpssretop 37348 finxpreclem3 37377 fin2solem 37596 lshpnelb 38973 lshpcmp 38977 lsatssn0 38991 lcvbr3 39012 lsatcv0 39020 lsat0cv 39022 lcvexchlem1 39023 islshpcv 39042 lkrpssN 39152 lkreqN 39159 osumcllem11N 39955 pexmidlem8N 39966 dochsordN 41363 dochsat 41372 dochshpncl 41373 dochexmidlem8 41456 mapdsord 41644 psspwb 42211 xppss12 42212 omssrncard 43523 trelpss 44438 isomenndlem 46521 lvecpsslmod 48502 |
| Copyright terms: Public domain | W3C validator |