| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version | ||
| Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30355). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4078). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3943). Other possible definitions are given by dfpss2 4063 and dfpss3 4064. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wpss 3927 | . 2 wff 𝐴 ⊊ 𝐵 |
| 4 | 1, 2 | wss 3926 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 5 | 1, 2 | wne 2932 | . . 3 wff 𝐴 ≠ 𝐵 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
| 7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpss2 4063 psseq1 4065 psseq2 4066 pssss 4073 pssne 4074 nssinpss 4242 pssdif 4344 0pss 4422 difsnpss 4783 ordelpss 6380 fisseneq 9263 ominf 9264 ominfOLD 9265 f1finf1o 9275 f1finf1oOLD 9276 fofinf1o 9342 inf3lem2 9641 inf3lem4 9643 infeq5 9649 fin23lem31 10355 isf32lem6 10370 ipolt 18543 lssnle 19653 pgpfaclem2 20063 lspsncv0 21105 islbs3 21114 lbsextlem4 21120 lidlnz 21201 filssufilg 23847 alexsubALTlem4 23986 ppiltx 27137 ex-pss 30355 ch0pss 31372 exsslsb 33582 nepss 35681 dfon2 35756 relowlpssretop 37328 finxpreclem3 37357 fin2solem 37576 lshpnelb 38948 lshpcmp 38952 lsatssn0 38966 lcvbr3 38987 lsatcv0 38995 lsat0cv 38997 lcvexchlem1 38998 islshpcv 39017 lkrpssN 39127 lkreqN 39134 osumcllem11N 39931 pexmidlem8N 39942 dochsordN 41339 dochsat 41348 dochshpncl 41349 dochexmidlem8 41432 mapdsord 41620 psspwb 42225 xppss12 42226 omssrncard 43511 trelpss 44427 isomenndlem 46507 lvecpsslmod 48431 |
| Copyright terms: Public domain | W3C validator |