![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30460). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4126). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3993). Other possible definitions are given by dfpss2 4111 and dfpss3 4112. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3977 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3976 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2946 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 4111 psseq1 4113 psseq2 4114 pssss 4121 pssne 4122 nssinpss 4286 pssdif 4392 0pss 4470 difsnpss 4832 ordelpss 6423 fisseneq 9320 ominf 9321 ominfOLD 9322 f1finf1o 9333 f1finf1oOLD 9334 fofinf1o 9400 inf3lem2 9698 inf3lem4 9700 infeq5 9706 fin23lem31 10412 isf32lem6 10427 ipolt 18605 lssnle 19716 pgpfaclem2 20126 lspsncv0 21171 islbs3 21180 lbsextlem4 21186 lidlnz 21275 filssufilg 23940 alexsubALTlem4 24079 ppiltx 27238 ex-pss 30460 ch0pss 31477 nepss 35680 dfon2 35756 relowlpssretop 37330 finxpreclem3 37359 fin2solem 37566 lshpnelb 38940 lshpcmp 38944 lsatssn0 38958 lcvbr3 38979 lsatcv0 38987 lsat0cv 38989 lcvexchlem1 38990 islshpcv 39009 lkrpssN 39119 lkreqN 39126 osumcllem11N 39923 pexmidlem8N 39934 dochsordN 41331 dochsat 41340 dochshpncl 41341 dochexmidlem8 41424 mapdsord 41612 psspwb 42221 xppss12 42222 omssrncard 43502 trelpss 44424 isomenndlem 46451 lvecpsslmod 48236 |
Copyright terms: Public domain | W3C validator |