![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30456). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4112). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3979). Other possible definitions are given by dfpss2 4097 and dfpss3 4098. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3963 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3962 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2937 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 4097 psseq1 4099 psseq2 4100 pssss 4107 pssne 4108 nssinpss 4272 pssdif 4374 0pss 4452 difsnpss 4811 ordelpss 6413 fisseneq 9290 ominf 9291 ominfOLD 9292 f1finf1o 9302 f1finf1oOLD 9303 fofinf1o 9369 inf3lem2 9666 inf3lem4 9668 infeq5 9674 fin23lem31 10380 isf32lem6 10395 ipolt 18592 lssnle 19706 pgpfaclem2 20116 lspsncv0 21165 islbs3 21174 lbsextlem4 21180 lidlnz 21269 filssufilg 23934 alexsubALTlem4 24073 ppiltx 27234 ex-pss 30456 ch0pss 31473 nepss 35697 dfon2 35773 relowlpssretop 37346 finxpreclem3 37375 fin2solem 37592 lshpnelb 38965 lshpcmp 38969 lsatssn0 38983 lcvbr3 39004 lsatcv0 39012 lsat0cv 39014 lcvexchlem1 39015 islshpcv 39034 lkrpssN 39144 lkreqN 39151 osumcllem11N 39948 pexmidlem8N 39959 dochsordN 41356 dochsat 41365 dochshpncl 41366 dochexmidlem8 41449 mapdsord 41637 psspwb 42245 xppss12 42246 omssrncard 43529 trelpss 44450 isomenndlem 46485 lvecpsslmod 48352 |
Copyright terms: Public domain | W3C validator |