| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version | ||
| Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30408). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4050). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3914). Other possible definitions are given by dfpss2 4035 and dfpss3 4036. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wpss 3898 | . 2 wff 𝐴 ⊊ 𝐵 |
| 4 | 1, 2 | wss 3897 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 5 | 1, 2 | wne 2928 | . . 3 wff 𝐴 ≠ 𝐵 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
| 7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpss2 4035 psseq1 4037 psseq2 4038 pssss 4045 pssne 4046 nssinpss 4214 pssdif 4316 0pss 4394 difsnpss 4756 ordelpss 6334 fisseneq 9147 ominf 9148 f1finf1o 9157 fofinf1o 9216 inf3lem2 9519 inf3lem4 9521 infeq5 9527 fin23lem31 10234 isf32lem6 10249 ipolt 18441 lssnle 19586 pgpfaclem2 19996 lspsncv0 21083 islbs3 21092 lbsextlem4 21098 lidlnz 21179 filssufilg 23826 alexsubALTlem4 23965 ppiltx 27114 ex-pss 30408 ch0pss 31425 exsslsb 33609 nepss 35762 dfon2 35834 relowlpssretop 37408 finxpreclem3 37437 fin2solem 37656 lshpnelb 39093 lshpcmp 39097 lsatssn0 39111 lcvbr3 39132 lsatcv0 39140 lsat0cv 39142 lcvexchlem1 39143 islshpcv 39162 lkrpssN 39272 lkreqN 39279 osumcllem11N 40075 pexmidlem8N 40086 dochsordN 41483 dochsat 41492 dochshpncl 41493 dochexmidlem8 41576 mapdsord 41764 psspwb 42331 xppss12 42332 omssrncard 43643 trelpss 44557 isomenndlem 46638 lvecpsslmod 48618 |
| Copyright terms: Public domain | W3C validator |