Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 28668). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4032). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3901). Other possible definitions are given by dfpss2 4017 and dfpss3 4018. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3885 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3884 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2943 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 399 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 209 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 4017 psseq1 4019 psseq2 4020 pssss 4027 pssne 4028 nssinpss 4188 pssdif 4298 0pss 4376 difsnpss 4737 ordelpss 6276 fisseneq 8937 ominf 8938 f1finf1o 8950 fofinf1o 8999 inf3lem2 9292 inf3lem4 9294 infeq5 9300 fin23lem31 10005 isf32lem6 10020 ipolt 18143 lssnle 19170 pgpfaclem2 19575 lspsncv0 20298 islbs3 20307 lbsextlem4 20313 lidlnz 20387 filssufilg 22945 alexsubALTlem4 23084 ppiltx 26206 ex-pss 28668 ch0pss 29683 nepss 33539 dfon2 33649 relowlpssretop 35441 finxpreclem3 35470 fin2solem 35669 lshpnelb 36904 lshpcmp 36908 lsatssn0 36922 lcvbr3 36943 lsatcv0 36951 lsat0cv 36953 lcvexchlem1 36954 islshpcv 36973 lkrpssN 37083 lkreqN 37090 osumcllem11N 37886 pexmidlem8N 37897 dochsordN 39294 dochsat 39303 dochshpncl 39304 dochexmidlem8 39387 mapdsord 39575 psspwb 40101 xppss12 40102 trelpss 41935 isomenndlem 43931 lvecpsslmod 45709 |
Copyright terms: Public domain | W3C validator |