| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version | ||
| Description: Define proper subclass (or strict subclass) relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 30330). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 4062). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3928). Other possible definitions are given by dfpss2 4047 and dfpss3 4048. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wpss 3912 | . 2 wff 𝐴 ⊊ 𝐵 |
| 4 | 1, 2 | wss 3911 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 5 | 1, 2 | wne 2925 | . . 3 wff 𝐴 ≠ 𝐵 |
| 6 | 4, 5 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
| 7 | 3, 6 | wb 206 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfpss2 4047 psseq1 4049 psseq2 4050 pssss 4057 pssne 4058 nssinpss 4226 pssdif 4328 0pss 4406 difsnpss 4767 ordelpss 6348 fisseneq 9180 ominf 9181 ominfOLD 9182 f1finf1o 9192 f1finf1oOLD 9193 fofinf1o 9259 inf3lem2 9558 inf3lem4 9560 infeq5 9566 fin23lem31 10272 isf32lem6 10287 ipolt 18470 lssnle 19580 pgpfaclem2 19990 lspsncv0 21032 islbs3 21041 lbsextlem4 21047 lidlnz 21128 filssufilg 23774 alexsubALTlem4 23913 ppiltx 27063 ex-pss 30330 ch0pss 31347 exsslsb 33565 nepss 35678 dfon2 35753 relowlpssretop 37325 finxpreclem3 37354 fin2solem 37573 lshpnelb 38950 lshpcmp 38954 lsatssn0 38968 lcvbr3 38989 lsatcv0 38997 lsat0cv 38999 lcvexchlem1 39000 islshpcv 39019 lkrpssN 39129 lkreqN 39136 osumcllem11N 39933 pexmidlem8N 39944 dochsordN 41341 dochsat 41350 dochshpncl 41351 dochexmidlem8 41434 mapdsord 41622 psspwb 42189 xppss12 42190 omssrncard 43502 trelpss 44417 isomenndlem 46501 lvecpsslmod 48469 |
| Copyright terms: Public domain | W3C validator |