MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrpss Structured version   Visualization version   GIF version

Theorem relrpss 7723
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
relrpss Rel []

Proof of Theorem relrpss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rpss 7722 . 2 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5816 1 Rel []
Colors of variables: wff setvar class
Syntax hints:  wpss 3945  Rel wrel 5677   [] crpss 7721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961  df-opab 5205  df-xp 5678  df-rel 5679  df-rpss 7722
This theorem is referenced by:  brrpssg  7724  compssiso  10391
  Copyright terms: Public domain W3C validator