MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrpss Structured version   Visualization version   GIF version

Theorem relrpss 7652
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
relrpss Rel []

Proof of Theorem relrpss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rpss 7651 . 2 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5758 1 Rel []
Colors of variables: wff setvar class
Syntax hints:  wpss 3901  Rel wrel 5619   [] crpss 7650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-ss 3917  df-opab 5152  df-xp 5620  df-rel 5621  df-rpss 7651
This theorem is referenced by:  brrpssg  7653  compssiso  10257
  Copyright terms: Public domain W3C validator