Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relrpss | Structured version Visualization version GIF version |
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
relrpss | ⊢ Rel [⊊] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rpss 7467 | . 2 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
2 | 1 | relopabiv 5664 | 1 ⊢ Rel [⊊] |
Colors of variables: wff setvar class |
Syntax hints: ⊊ wpss 3844 Rel wrel 5530 [⊊] crpss 7466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-in 3850 df-ss 3860 df-opab 5093 df-xp 5531 df-rel 5532 df-rpss 7467 |
This theorem is referenced by: brrpssg 7469 compssiso 9874 |
Copyright terms: Public domain | W3C validator |