MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrpss Structured version   Visualization version   GIF version

Theorem relrpss 7750
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
relrpss Rel []

Proof of Theorem relrpss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rpss 7749 . 2 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5837 1 Rel []
Colors of variables: wff setvar class
Syntax hints:  wpss 3967  Rel wrel 5698   [] crpss 7748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-ss 3983  df-opab 5214  df-xp 5699  df-rel 5700  df-rpss 7749
This theorem is referenced by:  brrpssg  7751  compssiso  10421
  Copyright terms: Public domain W3C validator