![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relrpss | Structured version Visualization version GIF version |
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
relrpss | ⊢ Rel [⊊] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rpss 7749 | . 2 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
2 | 1 | relopabiv 5837 | 1 ⊢ Rel [⊊] |
Colors of variables: wff setvar class |
Syntax hints: ⊊ wpss 3967 Rel wrel 5698 [⊊] crpss 7748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-ss 3983 df-opab 5214 df-xp 5699 df-rel 5700 df-rpss 7749 |
This theorem is referenced by: brrpssg 7751 compssiso 10421 |
Copyright terms: Public domain | W3C validator |