MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpssg Structured version   Visualization version   GIF version

Theorem brrpssg 7578
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
brrpssg (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))

Proof of Theorem brrpssg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . 3 (𝐵𝑉𝐵 ∈ V)
2 relrpss 7577 . . . 4 Rel []
32brrelex1i 5643 . . 3 (𝐴 [] 𝐵𝐴 ∈ V)
41, 3anim12i 613 . 2 ((𝐵𝑉𝐴 [] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
51adantr 481 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐵 ∈ V)
6 pssss 4030 . . . 4 (𝐴𝐵𝐴𝐵)
7 ssexg 5247 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
86, 1, 7syl2anr 597 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
95, 8jca 512 . 2 ((𝐵𝑉𝐴𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
10 psseq1 4022 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 psseq2 4023 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-rpss 7576 . . . 4 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5452 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
1413ancoms 459 . 2 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
154, 9, 14pm5.21nd 799 1 (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  wss 3887  wpss 3888   class class class wbr 5074   [] crpss 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-rpss 7576
This theorem is referenced by:  brrpss  7579  sorpssi  7582
  Copyright terms: Public domain W3C validator