MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpssg Structured version   Visualization version   GIF version

Theorem brrpssg 7701
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
brrpssg (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))

Proof of Theorem brrpssg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . 3 (𝐵𝑉𝐵 ∈ V)
2 relrpss 7700 . . . 4 Rel []
32brrelex1i 5694 . . 3 (𝐴 [] 𝐵𝐴 ∈ V)
41, 3anim12i 613 . 2 ((𝐵𝑉𝐴 [] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
51adantr 480 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐵 ∈ V)
6 pssss 4061 . . . 4 (𝐴𝐵𝐴𝐵)
7 ssexg 5278 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
86, 1, 7syl2anr 597 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
95, 8jca 511 . 2 ((𝐵𝑉𝐴𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
10 psseq1 4053 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 psseq2 4054 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-rpss 7699 . . . 4 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5499 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
1413ancoms 458 . 2 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
154, 9, 14pm5.21nd 801 1 (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447  wss 3914  wpss 3915   class class class wbr 5107   [] crpss 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-rpss 7699
This theorem is referenced by:  brrpss  7702  sorpssi  7705
  Copyright terms: Public domain W3C validator