| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrpssg | Structured version Visualization version GIF version | ||
| Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| brrpssg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | relrpss 7657 | . . . 4 ⊢ Rel [⊊] | |
| 3 | 2 | brrelex1i 5670 | . . 3 ⊢ (𝐴 [⊊] 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | anim12i 613 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
| 5 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐵 ∈ V) |
| 6 | pssss 4045 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 8 | 6, 1, 7 | syl2anr 597 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐴 ∈ V) |
| 9 | 5, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
| 10 | psseq1 4037 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
| 11 | psseq2 4038 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
| 12 | df-rpss 7656 | . . . 4 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
| 13 | 10, 11, 12 | brabg 5477 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| 14 | 13 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| 15 | 4, 9, 14 | pm5.21nd 801 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5089 [⊊] crpss 7655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-rpss 7656 |
| This theorem is referenced by: brrpss 7659 sorpssi 7662 |
| Copyright terms: Public domain | W3C validator |