| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrpssg | Structured version Visualization version GIF version | ||
| Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| brrpssg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 2 | relrpss 7703 | . . . 4 ⊢ Rel [⊊] | |
| 3 | 2 | brrelex1i 5697 | . . 3 ⊢ (𝐴 [⊊] 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | anim12i 613 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
| 5 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐵 ∈ V) |
| 6 | pssss 4064 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | ssexg 5281 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 8 | 6, 1, 7 | syl2anr 597 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐴 ∈ V) |
| 9 | 5, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
| 10 | psseq1 4056 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
| 11 | psseq2 4057 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
| 12 | df-rpss 7702 | . . . 4 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
| 13 | 10, 11, 12 | brabg 5502 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| 14 | 13 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| 15 | 4, 9, 14 | pm5.21nd 801 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ⊊ wpss 3918 class class class wbr 5110 [⊊] crpss 7701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-rpss 7702 |
| This theorem is referenced by: brrpss 7705 sorpssi 7708 |
| Copyright terms: Public domain | W3C validator |