Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrpssg | Structured version Visualization version GIF version |
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
brrpssg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | relrpss 7555 | . . . 4 ⊢ Rel [⊊] | |
3 | 2 | brrelex1i 5634 | . . 3 ⊢ (𝐴 [⊊] 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | anim12i 612 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
5 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐵 ∈ V) |
6 | pssss 4026 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | ssexg 5242 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
8 | 6, 1, 7 | syl2anr 596 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐴 ∈ V) |
9 | 5, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
10 | psseq1 4018 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
11 | psseq2 4019 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
12 | df-rpss 7554 | . . . 4 ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | |
13 | 10, 11, 12 | brabg 5445 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
14 | 13 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
15 | 4, 9, 14 | pm5.21nd 798 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: brrpss 7557 sorpssi 7560 |
Copyright terms: Public domain | W3C validator |