![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrpssg | Structured version Visualization version GIF version |
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
brrpssg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3487 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | relrpss 7710 | . . . 4 ⊢ Rel [⊊] | |
3 | 2 | brrelex1i 5725 | . . 3 ⊢ (𝐴 [⊊] 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | anim12i 612 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
5 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐵 ∈ V) |
6 | pssss 4090 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
7 | ssexg 5316 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
8 | 6, 1, 7 | syl2anr 596 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → 𝐴 ∈ V) |
9 | 5, 8 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
10 | psseq1 4082 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
11 | psseq2 4083 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
12 | df-rpss 7709 | . . . 4 ⊢ [⊊] = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊊ 𝑦} | |
13 | 10, 11, 12 | brabg 5532 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
14 | 13 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
15 | 4, 9, 14 | pm5.21nd 799 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ⊊ wpss 3944 class class class wbr 5141 [⊊] crpss 7708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-rpss 7709 |
This theorem is referenced by: brrpss 7712 sorpssi 7715 |
Copyright terms: Public domain | W3C validator |