MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpssg Structured version   Visualization version   GIF version

Theorem brrpssg 7681
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
brrpssg (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))

Proof of Theorem brrpssg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . . 3 (𝐵𝑉𝐵 ∈ V)
2 relrpss 7680 . . . 4 Rel []
32brrelex1i 5687 . . 3 (𝐴 [] 𝐵𝐴 ∈ V)
41, 3anim12i 613 . 2 ((𝐵𝑉𝐴 [] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
51adantr 480 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐵 ∈ V)
6 pssss 4057 . . . 4 (𝐴𝐵𝐴𝐵)
7 ssexg 5273 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
86, 1, 7syl2anr 597 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
95, 8jca 511 . 2 ((𝐵𝑉𝐴𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
10 psseq1 4049 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 psseq2 4050 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-rpss 7679 . . . 4 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5494 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
1413ancoms 458 . 2 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
154, 9, 14pm5.21nd 801 1 (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  wss 3911  wpss 3912   class class class wbr 5102   [] crpss 7678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-rpss 7679
This theorem is referenced by:  brrpss  7682  sorpssi  7685
  Copyright terms: Public domain W3C validator