MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrpssg Structured version   Visualization version   GIF version

Theorem brrpssg 7711
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
brrpssg (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))

Proof of Theorem brrpssg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . . 3 (𝐵𝑉𝐵 ∈ V)
2 relrpss 7710 . . . 4 Rel []
32brrelex1i 5730 . . 3 (𝐴 [] 𝐵𝐴 ∈ V)
41, 3anim12i 613 . 2 ((𝐵𝑉𝐴 [] 𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
51adantr 481 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐵 ∈ V)
6 pssss 4094 . . . 4 (𝐴𝐵𝐴𝐵)
7 ssexg 5322 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
86, 1, 7syl2anr 597 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
95, 8jca 512 . 2 ((𝐵𝑉𝐴𝐵) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
10 psseq1 4086 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 psseq2 4087 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-rpss 7709 . . . 4 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5538 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
1413ancoms 459 . 2 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐴 [] 𝐵𝐴𝐵))
154, 9, 14pm5.21nd 800 1 (𝐵𝑉 → (𝐴 [] 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474  wss 3947  wpss 3948   class class class wbr 5147   [] crpss 7708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-rpss 7709
This theorem is referenced by:  brrpss  7712  sorpssi  7715
  Copyright terms: Public domain W3C validator