Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 31945
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 31946 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 31940 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1541 . . . . . . 7 class 𝑟
4 czlm 20700 . . . . . . 7 class ℤMod
53, 4cfv 6432 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 23734 . . . . . 6 class NrmMod
75, 6wcel 2110 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 20701 . . . . . . 7 class chr
93, 8cfv 6432 . . . . . 6 class (chr‘𝑟)
10 cc0 10872 . . . . . 6 class 0
119, 10wceq 1542 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 396 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 23447 . . . . . 6 class CUnifSp
143, 13wcel 2110 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 23403 . . . . . . 7 class UnifSt
163, 15cfv 6432 . . . . . 6 class (UnifSt‘𝑟)
17 cds 16969 . . . . . . . . 9 class dist
183, 17cfv 6432 . . . . . . . 8 class (dist‘𝑟)
19 cbs 16910 . . . . . . . . . 10 class Base
203, 19cfv 6432 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5588 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5592 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 20586 . . . . . . 7 class metUnif
2422, 23cfv 6432 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1542 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 396 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 396 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 23733 . . . 4 class NrmRing
29 cdr 19989 . . . 4 class DivRing
3028, 29cin 3891 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3070 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1542 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  31946
  Copyright terms: Public domain W3C validator