Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 33982
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 33983 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 33977 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1539 . . . . . . 7 class 𝑟
4 czlm 21442 . . . . . . 7 class ℤMod
53, 4cfv 6499 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24501 . . . . . 6 class NrmMod
75, 6wcel 2109 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21443 . . . . . . 7 class chr
93, 8cfv 6499 . . . . . 6 class (chr‘𝑟)
10 cc0 11044 . . . . . 6 class 0
119, 10wceq 1540 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24217 . . . . . 6 class CUnifSp
143, 13wcel 2109 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24174 . . . . . . 7 class UnifSt
163, 15cfv 6499 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17205 . . . . . . . . 9 class dist
183, 17cfv 6499 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17155 . . . . . . . . . 10 class Base
203, 19cfv 6499 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5629 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5633 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21287 . . . . . . 7 class metUnif
2422, 23cfv 6499 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1540 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24500 . . . 4 class NrmRing
29 cdr 20649 . . . 4 class DivRing
3028, 29cin 3910 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3402 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1540 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  33983
  Copyright terms: Public domain W3C validator