Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 33962
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 33963 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 33957 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1536 . . . . . . 7 class 𝑟
4 czlm 21529 . . . . . . 7 class ℤMod
53, 4cfv 6563 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24609 . . . . . 6 class NrmMod
75, 6wcel 2106 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21530 . . . . . . 7 class chr
93, 8cfv 6563 . . . . . 6 class (chr‘𝑟)
10 cc0 11153 . . . . . 6 class 0
119, 10wceq 1537 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24322 . . . . . 6 class CUnifSp
143, 13wcel 2106 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24278 . . . . . . 7 class UnifSt
163, 15cfv 6563 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17307 . . . . . . . . 9 class dist
183, 17cfv 6563 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17245 . . . . . . . . . 10 class Base
203, 19cfv 6563 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5687 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5691 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21373 . . . . . . 7 class metUnif
2422, 23cfv 6563 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1537 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24608 . . . 4 class NrmRing
29 cdr 20746 . . . 4 class DivRing
3028, 29cin 3962 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3433 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1537 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  33963
  Copyright terms: Public domain W3C validator