Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 31849
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 31850 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 31844 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1538 . . . . . . 7 class 𝑟
4 czlm 20614 . . . . . . 7 class ℤMod
53, 4cfv 6418 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 23642 . . . . . 6 class NrmMod
75, 6wcel 2108 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 20615 . . . . . . 7 class chr
93, 8cfv 6418 . . . . . 6 class (chr‘𝑟)
10 cc0 10802 . . . . . 6 class 0
119, 10wceq 1539 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 23357 . . . . . 6 class CUnifSp
143, 13wcel 2108 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 23313 . . . . . . 7 class UnifSt
163, 15cfv 6418 . . . . . 6 class (UnifSt‘𝑟)
17 cds 16897 . . . . . . . . 9 class dist
183, 17cfv 6418 . . . . . . . 8 class (dist‘𝑟)
19 cbs 16840 . . . . . . . . . 10 class Base
203, 19cfv 6418 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5578 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5582 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 20501 . . . . . . 7 class metUnif
2422, 23cfv 6418 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1539 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 23641 . . . 4 class NrmRing
29 cdr 19906 . . . 4 class DivRing
3028, 29cin 3882 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3067 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1539 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  31850
  Copyright terms: Public domain W3C validator