Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 34012
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 34013 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 34007 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1540 . . . . . . 7 class 𝑟
4 czlm 21437 . . . . . . 7 class ℤMod
53, 4cfv 6481 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24495 . . . . . 6 class NrmMod
75, 6wcel 2111 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21438 . . . . . . 7 class chr
93, 8cfv 6481 . . . . . 6 class (chr‘𝑟)
10 cc0 11006 . . . . . 6 class 0
119, 10wceq 1541 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24211 . . . . . 6 class CUnifSp
143, 13wcel 2111 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24168 . . . . . . 7 class UnifSt
163, 15cfv 6481 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17170 . . . . . . . . 9 class dist
183, 17cfv 6481 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17120 . . . . . . . . . 10 class Base
203, 19cfv 6481 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5612 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5616 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21282 . . . . . . 7 class metUnif
2422, 23cfv 6481 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1541 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24494 . . . 4 class NrmRing
29 cdr 20644 . . . 4 class DivRing
3028, 29cin 3896 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3395 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1541 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  34013
  Copyright terms: Public domain W3C validator