Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 33945
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 33946 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 33940 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1536 . . . . . . 7 class 𝑟
4 czlm 21534 . . . . . . 7 class ℤMod
53, 4cfv 6573 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24614 . . . . . 6 class NrmMod
75, 6wcel 2108 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21535 . . . . . . 7 class chr
93, 8cfv 6573 . . . . . 6 class (chr‘𝑟)
10 cc0 11184 . . . . . 6 class 0
119, 10wceq 1537 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24327 . . . . . 6 class CUnifSp
143, 13wcel 2108 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24283 . . . . . . 7 class UnifSt
163, 15cfv 6573 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17320 . . . . . . . . 9 class dist
183, 17cfv 6573 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17258 . . . . . . . . . 10 class Base
203, 19cfv 6573 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5698 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5702 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21378 . . . . . . 7 class metUnif
2422, 23cfv 6573 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1537 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24613 . . . 4 class NrmRing
29 cdr 20751 . . . 4 class DivRing
3028, 29cin 3975 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3443 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1537 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  33946
  Copyright terms: Public domain W3C validator