Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 31949
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 31950 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 31944 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1538 . . . . . . 7 class 𝑟
4 czlm 20702 . . . . . . 7 class ℤMod
53, 4cfv 6433 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 23736 . . . . . 6 class NrmMod
75, 6wcel 2106 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 20703 . . . . . . 7 class chr
93, 8cfv 6433 . . . . . 6 class (chr‘𝑟)
10 cc0 10871 . . . . . 6 class 0
119, 10wceq 1539 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 396 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 23449 . . . . . 6 class CUnifSp
143, 13wcel 2106 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 23405 . . . . . . 7 class UnifSt
163, 15cfv 6433 . . . . . 6 class (UnifSt‘𝑟)
17 cds 16971 . . . . . . . . 9 class dist
183, 17cfv 6433 . . . . . . . 8 class (dist‘𝑟)
19 cbs 16912 . . . . . . . . . 10 class Base
203, 19cfv 6433 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5587 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5591 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 20588 . . . . . . 7 class metUnif
2422, 23cfv 6433 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1539 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 396 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 396 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 23735 . . . 4 class NrmRing
29 cdr 19991 . . . 4 class DivRing
3028, 29cin 3886 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3068 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1539 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  31950
  Copyright terms: Public domain W3C validator