Detailed syntax breakdown of Definition df-rrext
Step | Hyp | Ref
| Expression |
1 | | crrext 31944 |
. 2
class
ℝExt |
2 | | vr |
. . . . . . . 8
setvar 𝑟 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑟 |
4 | | czlm 20702 |
. . . . . . 7
class
ℤMod |
5 | 3, 4 | cfv 6433 |
. . . . . 6
class
(ℤMod‘𝑟) |
6 | | cnlm 23736 |
. . . . . 6
class
NrmMod |
7 | 5, 6 | wcel 2106 |
. . . . 5
wff
(ℤMod‘𝑟)
∈ NrmMod |
8 | | cchr 20703 |
. . . . . . 7
class
chr |
9 | 3, 8 | cfv 6433 |
. . . . . 6
class
(chr‘𝑟) |
10 | | cc0 10871 |
. . . . . 6
class
0 |
11 | 9, 10 | wceq 1539 |
. . . . 5
wff
(chr‘𝑟) =
0 |
12 | 7, 11 | wa 396 |
. . . 4
wff
((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) |
13 | | ccusp 23449 |
. . . . . 6
class
CUnifSp |
14 | 3, 13 | wcel 2106 |
. . . . 5
wff 𝑟 ∈ CUnifSp |
15 | | cuss 23405 |
. . . . . . 7
class
UnifSt |
16 | 3, 15 | cfv 6433 |
. . . . . 6
class
(UnifSt‘𝑟) |
17 | | cds 16971 |
. . . . . . . . 9
class
dist |
18 | 3, 17 | cfv 6433 |
. . . . . . . 8
class
(dist‘𝑟) |
19 | | cbs 16912 |
. . . . . . . . . 10
class
Base |
20 | 3, 19 | cfv 6433 |
. . . . . . . . 9
class
(Base‘𝑟) |
21 | 20, 20 | cxp 5587 |
. . . . . . . 8
class
((Base‘𝑟)
× (Base‘𝑟)) |
22 | 18, 21 | cres 5591 |
. . . . . . 7
class
((dist‘𝑟)
↾ ((Base‘𝑟)
× (Base‘𝑟))) |
23 | | cmetu 20588 |
. . . . . . 7
class
metUnif |
24 | 22, 23 | cfv 6433 |
. . . . . 6
class
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) |
25 | 16, 24 | wceq 1539 |
. . . . 5
wff
(UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) |
26 | 14, 25 | wa 396 |
. . . 4
wff (𝑟 ∈ CUnifSp ∧
(UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) |
27 | 12, 26 | wa 396 |
. . 3
wff
(((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) |
28 | | cnrg 23735 |
. . . 4
class
NrmRing |
29 | | cdr 19991 |
. . . 4
class
DivRing |
30 | 28, 29 | cin 3886 |
. . 3
class (NrmRing
∩ DivRing) |
31 | 27, 2, 30 | crab 3068 |
. 2
class {𝑟 ∈ (NrmRing ∩ DivRing)
∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |
32 | 1, 31 | wceq 1539 |
1
wff ℝExt
= {𝑟 ∈ (NrmRing ∩
DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |