Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 34030
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 34031 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 34025 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1539 . . . . . . 7 class 𝑟
4 czlm 21461 . . . . . . 7 class ℤMod
53, 4cfv 6531 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24519 . . . . . 6 class NrmMod
75, 6wcel 2108 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21462 . . . . . . 7 class chr
93, 8cfv 6531 . . . . . 6 class (chr‘𝑟)
10 cc0 11129 . . . . . 6 class 0
119, 10wceq 1540 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24235 . . . . . 6 class CUnifSp
143, 13wcel 2108 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24192 . . . . . . 7 class UnifSt
163, 15cfv 6531 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17280 . . . . . . . . 9 class dist
183, 17cfv 6531 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17228 . . . . . . . . . 10 class Base
203, 19cfv 6531 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5652 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5656 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21306 . . . . . . 7 class metUnif
2422, 23cfv 6531 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1540 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24518 . . . 4 class NrmRing
29 cdr 20689 . . . 4 class DivRing
3028, 29cin 3925 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3415 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1540 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  34031
  Copyright terms: Public domain W3C validator