Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 33048
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 33049 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 33043 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1540 . . . . . . 7 class 𝑟
4 czlm 21056 . . . . . . 7 class ℤMod
53, 4cfv 6543 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24096 . . . . . 6 class NrmMod
75, 6wcel 2106 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21057 . . . . . . 7 class chr
93, 8cfv 6543 . . . . . 6 class (chr‘𝑟)
10 cc0 11112 . . . . . 6 class 0
119, 10wceq 1541 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 396 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 23809 . . . . . 6 class CUnifSp
143, 13wcel 2106 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 23765 . . . . . . 7 class UnifSt
163, 15cfv 6543 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17208 . . . . . . . . 9 class dist
183, 17cfv 6543 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17146 . . . . . . . . . 10 class Base
203, 19cfv 6543 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5674 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5678 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 20941 . . . . . . 7 class metUnif
2422, 23cfv 6543 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1541 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 396 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 396 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24095 . . . 4 class NrmRing
29 cdr 20361 . . . 4 class DivRing
3028, 29cin 3947 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3432 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1541 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  33049
  Copyright terms: Public domain W3C validator