Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rrext Structured version   Visualization version   GIF version

Definition df-rrext 34000
Description: Define the class of extensions of . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (, and ). It would be interesting see if this is formally treated in the literature. See isrrext 34001 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
df-rrext ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}

Detailed syntax breakdown of Definition df-rrext
StepHypRef Expression
1 crrext 33995 . 2 class ℝExt
2 vr . . . . . . . 8 setvar 𝑟
32cv 1539 . . . . . . 7 class 𝑟
4 czlm 21511 . . . . . . 7 class ℤMod
53, 4cfv 6561 . . . . . 6 class (ℤMod‘𝑟)
6 cnlm 24593 . . . . . 6 class NrmMod
75, 6wcel 2108 . . . . 5 wff (ℤMod‘𝑟) ∈ NrmMod
8 cchr 21512 . . . . . . 7 class chr
93, 8cfv 6561 . . . . . 6 class (chr‘𝑟)
10 cc0 11155 . . . . . 6 class 0
119, 10wceq 1540 . . . . 5 wff (chr‘𝑟) = 0
127, 11wa 395 . . . 4 wff ((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0)
13 ccusp 24306 . . . . . 6 class CUnifSp
143, 13wcel 2108 . . . . 5 wff 𝑟 ∈ CUnifSp
15 cuss 24262 . . . . . . 7 class UnifSt
163, 15cfv 6561 . . . . . 6 class (UnifSt‘𝑟)
17 cds 17306 . . . . . . . . 9 class dist
183, 17cfv 6561 . . . . . . . 8 class (dist‘𝑟)
19 cbs 17247 . . . . . . . . . 10 class Base
203, 19cfv 6561 . . . . . . . . 9 class (Base‘𝑟)
2120, 20cxp 5683 . . . . . . . 8 class ((Base‘𝑟) × (Base‘𝑟))
2218, 21cres 5687 . . . . . . 7 class ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))
23 cmetu 21355 . . . . . . 7 class metUnif
2422, 23cfv 6561 . . . . . 6 class (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2516, 24wceq 1540 . . . . 5 wff (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))
2614, 25wa 395 . . . 4 wff (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))
2712, 26wa 395 . . 3 wff (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))
28 cnrg 24592 . . . 4 class NrmRing
29 cdr 20729 . . . 4 class DivRing
3028, 29cin 3950 . . 3 class (NrmRing ∩ DivRing)
3127, 2, 30crab 3436 . 2 class {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
321, 31wceq 1540 1 wff ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
Colors of variables: wff setvar class
This definition is referenced by:  isrrext  34001
  Copyright terms: Public domain W3C validator