Detailed syntax breakdown of Definition df-rrext
| Step | Hyp | Ref
| Expression |
| 1 | | crrext 33995 |
. 2
class
ℝExt |
| 2 | | vr |
. . . . . . . 8
setvar 𝑟 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 4 | | czlm 21511 |
. . . . . . 7
class
ℤMod |
| 5 | 3, 4 | cfv 6561 |
. . . . . 6
class
(ℤMod‘𝑟) |
| 6 | | cnlm 24593 |
. . . . . 6
class
NrmMod |
| 7 | 5, 6 | wcel 2108 |
. . . . 5
wff
(ℤMod‘𝑟)
∈ NrmMod |
| 8 | | cchr 21512 |
. . . . . . 7
class
chr |
| 9 | 3, 8 | cfv 6561 |
. . . . . 6
class
(chr‘𝑟) |
| 10 | | cc0 11155 |
. . . . . 6
class
0 |
| 11 | 9, 10 | wceq 1540 |
. . . . 5
wff
(chr‘𝑟) =
0 |
| 12 | 7, 11 | wa 395 |
. . . 4
wff
((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) |
| 13 | | ccusp 24306 |
. . . . . 6
class
CUnifSp |
| 14 | 3, 13 | wcel 2108 |
. . . . 5
wff 𝑟 ∈ CUnifSp |
| 15 | | cuss 24262 |
. . . . . . 7
class
UnifSt |
| 16 | 3, 15 | cfv 6561 |
. . . . . 6
class
(UnifSt‘𝑟) |
| 17 | | cds 17306 |
. . . . . . . . 9
class
dist |
| 18 | 3, 17 | cfv 6561 |
. . . . . . . 8
class
(dist‘𝑟) |
| 19 | | cbs 17247 |
. . . . . . . . . 10
class
Base |
| 20 | 3, 19 | cfv 6561 |
. . . . . . . . 9
class
(Base‘𝑟) |
| 21 | 20, 20 | cxp 5683 |
. . . . . . . 8
class
((Base‘𝑟)
× (Base‘𝑟)) |
| 22 | 18, 21 | cres 5687 |
. . . . . . 7
class
((dist‘𝑟)
↾ ((Base‘𝑟)
× (Base‘𝑟))) |
| 23 | | cmetu 21355 |
. . . . . . 7
class
metUnif |
| 24 | 22, 23 | cfv 6561 |
. . . . . 6
class
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) |
| 25 | 16, 24 | wceq 1540 |
. . . . 5
wff
(UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) |
| 26 | 14, 25 | wa 395 |
. . . 4
wff (𝑟 ∈ CUnifSp ∧
(UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) |
| 27 | 12, 26 | wa 395 |
. . 3
wff
(((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) |
| 28 | | cnrg 24592 |
. . . 4
class
NrmRing |
| 29 | | cdr 20729 |
. . . 4
class
DivRing |
| 30 | 28, 29 | cin 3950 |
. . 3
class (NrmRing
∩ DivRing) |
| 31 | 27, 2, 30 | crab 3436 |
. 2
class {𝑟 ∈ (NrmRing ∩ DivRing)
∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |
| 32 | 1, 31 | wceq 1540 |
1
wff ℝExt
= {𝑟 ∈ (NrmRing ∩
DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |