Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   GIF version

Theorem isrrext 33990
Description: Express the property "𝑅 is an extension of ". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b 𝐵 = (Base‘𝑅)
isrrext.v 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
isrrext.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
isrrext (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))

Proof of Theorem isrrext
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . . 3 (𝑅 ∈ (NrmRing ∩ DivRing) ↔ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
21anbi1i 624 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
3 fveq2 6858 . . . . . . 7 (𝑟 = 𝑅 → (ℤMod‘𝑟) = (ℤMod‘𝑅))
43eleq1d 2813 . . . . . 6 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod))
5 isrrext.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
65eleq1i 2819 . . . . . 6 (𝑍 ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod)
74, 6bitr4di 289 . . . . 5 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ 𝑍 ∈ NrmMod))
8 fveqeq2 6867 . . . . 5 (𝑟 = 𝑅 → ((chr‘𝑟) = 0 ↔ (chr‘𝑅) = 0))
97, 8anbi12d 632 . . . 4 (𝑟 = 𝑅 → (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ↔ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)))
10 eleq1 2816 . . . . 5 (𝑟 = 𝑅 → (𝑟 ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp))
11 fveq2 6858 . . . . . 6 (𝑟 = 𝑅 → (UnifSt‘𝑟) = (UnifSt‘𝑅))
12 fveq2 6858 . . . . . . . . 9 (𝑟 = 𝑅 → (dist‘𝑟) = (dist‘𝑅))
13 fveq2 6858 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
14 isrrext.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1513, 14eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
1615sqxpeqd 5670 . . . . . . . . 9 (𝑟 = 𝑅 → ((Base‘𝑟) × (Base‘𝑟)) = (𝐵 × 𝐵))
1712, 16reseq12d 5951 . . . . . . . 8 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = ((dist‘𝑅) ↾ (𝐵 × 𝐵)))
18 isrrext.v . . . . . . . 8 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
1917, 18eqtr4di 2782 . . . . . . 7 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = 𝐷)
2019fveq2d 6862 . . . . . 6 (𝑟 = 𝑅 → (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) = (metUnif‘𝐷))
2111, 20eqeq12d 2745 . . . . 5 (𝑟 = 𝑅 → ((UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) ↔ (UnifSt‘𝑅) = (metUnif‘𝐷)))
2210, 21anbi12d 632 . . . 4 (𝑟 = 𝑅 → ((𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) ↔ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
239, 22anbi12d 632 . . 3 (𝑟 = 𝑅 → ((((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) ↔ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
24 df-rrext 33989 . . 3 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
2523, 24elrab2 3662 . 2 (𝑅 ∈ ℝExt ↔ (𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
26 3anass 1094 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
272, 25, 263bitr4i 303 1 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913   × cxp 5636  cres 5640  cfv 6511  0cc0 11068  Basecbs 17179  distcds 17229  DivRingcdr 20638  metUnifcmetu 21255  ℤModczlm 21410  chrcchr 21411  UnifStcuss 24141  CUnifSpccusp 24184  NrmRingcnrg 24467  NrmModcnlm 24468   ℝExt crrext 33984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-rrext 33989
This theorem is referenced by:  rrextnrg  33991  rrextdrg  33992  rrextnlm  33993  rrextchr  33994  rrextcusp  33995  rrextust  33998  rerrext  33999  cnrrext  34000
  Copyright terms: Public domain W3C validator