Step | Hyp | Ref
| Expression |
1 | | elin 3963 |
. . 3
β’ (π
β (NrmRing β© DivRing)
β (π
β NrmRing
β§ π
β
DivRing)) |
2 | 1 | anbi1i 624 |
. 2
β’ ((π
β (NrmRing β© DivRing)
β§ ((π β NrmMod
β§ (chrβπ
) = 0)
β§ (π
β CUnifSp
β§ (UnifStβπ
) =
(metUnifβπ·)))) β
((π
β NrmRing β§
π
β DivRing) β§
((π β NrmMod β§
(chrβπ
) = 0) β§
(π
β CUnifSp β§
(UnifStβπ
) =
(metUnifβπ·))))) |
3 | | fveq2 6888 |
. . . . . . 7
β’ (π = π
β (β€Modβπ) = (β€Modβπ
)) |
4 | 3 | eleq1d 2818 |
. . . . . 6
β’ (π = π
β ((β€Modβπ) β NrmMod β
(β€Modβπ
) β
NrmMod)) |
5 | | isrrext.z |
. . . . . . 7
β’ π = (β€Modβπ
) |
6 | 5 | eleq1i 2824 |
. . . . . 6
β’ (π β NrmMod β
(β€Modβπ
) β
NrmMod) |
7 | 4, 6 | bitr4di 288 |
. . . . 5
β’ (π = π
β ((β€Modβπ) β NrmMod β π β
NrmMod)) |
8 | | fveqeq2 6897 |
. . . . 5
β’ (π = π
β ((chrβπ) = 0 β (chrβπ
) = 0)) |
9 | 7, 8 | anbi12d 631 |
. . . 4
β’ (π = π
β (((β€Modβπ) β NrmMod β§
(chrβπ) = 0) β
(π β NrmMod β§
(chrβπ
) =
0))) |
10 | | eleq1 2821 |
. . . . 5
β’ (π = π
β (π β CUnifSp β π
β CUnifSp)) |
11 | | fveq2 6888 |
. . . . . 6
β’ (π = π
β (UnifStβπ) = (UnifStβπ
)) |
12 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = π
β (distβπ) = (distβπ
)) |
13 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
14 | | isrrext.b |
. . . . . . . . . . 11
β’ π΅ = (Baseβπ
) |
15 | 13, 14 | eqtr4di 2790 |
. . . . . . . . . 10
β’ (π = π
β (Baseβπ) = π΅) |
16 | 15 | sqxpeqd 5707 |
. . . . . . . . 9
β’ (π = π
β ((Baseβπ) Γ (Baseβπ)) = (π΅ Γ π΅)) |
17 | 12, 16 | reseq12d 5980 |
. . . . . . . 8
β’ (π = π
β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = ((distβπ
) βΎ (π΅ Γ π΅))) |
18 | | isrrext.v |
. . . . . . . 8
β’ π· = ((distβπ
) βΎ (π΅ Γ π΅)) |
19 | 17, 18 | eqtr4di 2790 |
. . . . . . 7
β’ (π = π
β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = π·) |
20 | 19 | fveq2d 6892 |
. . . . . 6
β’ (π = π
β (metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) = (metUnifβπ·)) |
21 | 11, 20 | eqeq12d 2748 |
. . . . 5
β’ (π = π
β ((UnifStβπ) = (metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) β (UnifStβπ
) = (metUnifβπ·))) |
22 | 10, 21 | anbi12d 631 |
. . . 4
β’ (π = π
β ((π β CUnifSp β§ (UnifStβπ) =
(metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) β (π
β CUnifSp β§ (UnifStβπ
) = (metUnifβπ·)))) |
23 | 9, 22 | anbi12d 631 |
. . 3
β’ (π = π
β ((((β€Modβπ) β NrmMod β§
(chrβπ) = 0) β§
(π β CUnifSp β§
(UnifStβπ) =
(metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))))) β ((π β NrmMod β§ (chrβπ
) = 0) β§ (π
β CUnifSp β§ (UnifStβπ
) = (metUnifβπ·))))) |
24 | | df-rrext 32967 |
. . 3
β’
βExt = {π β
(NrmRing β© DivRing) β£ (((β€Modβπ) β NrmMod β§ (chrβπ) = 0) β§ (π β CUnifSp β§ (UnifStβπ) =
(metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))))} |
25 | 23, 24 | elrab2 3685 |
. 2
β’ (π
β βExt β (π
β (NrmRing β© DivRing)
β§ ((π β NrmMod
β§ (chrβπ
) = 0)
β§ (π
β CUnifSp
β§ (UnifStβπ
) =
(metUnifβπ·))))) |
26 | | 3anass 1095 |
. 2
β’ (((π
β NrmRing β§ π
β DivRing) β§ (π β NrmMod β§
(chrβπ
) = 0) β§
(π
β CUnifSp β§
(UnifStβπ
) =
(metUnifβπ·))) β
((π
β NrmRing β§
π
β DivRing) β§
((π β NrmMod β§
(chrβπ
) = 0) β§
(π
β CUnifSp β§
(UnifStβπ
) =
(metUnifβπ·))))) |
27 | 2, 25, 26 | 3bitr4i 302 |
1
β’ (π
β βExt β
((π
β NrmRing β§
π
β DivRing) β§
(π β NrmMod β§
(chrβπ
) = 0) β§
(π
β CUnifSp β§
(UnifStβπ
) =
(metUnifβπ·)))) |