Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   GIF version

Theorem isrrext 34013
Description: Express the property "𝑅 is an extension of ". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b 𝐵 = (Base‘𝑅)
isrrext.v 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
isrrext.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
isrrext (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))

Proof of Theorem isrrext
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3913 . . 3 (𝑅 ∈ (NrmRing ∩ DivRing) ↔ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
21anbi1i 624 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
3 fveq2 6822 . . . . . . 7 (𝑟 = 𝑅 → (ℤMod‘𝑟) = (ℤMod‘𝑅))
43eleq1d 2816 . . . . . 6 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod))
5 isrrext.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
65eleq1i 2822 . . . . . 6 (𝑍 ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod)
74, 6bitr4di 289 . . . . 5 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ 𝑍 ∈ NrmMod))
8 fveqeq2 6831 . . . . 5 (𝑟 = 𝑅 → ((chr‘𝑟) = 0 ↔ (chr‘𝑅) = 0))
97, 8anbi12d 632 . . . 4 (𝑟 = 𝑅 → (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ↔ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)))
10 eleq1 2819 . . . . 5 (𝑟 = 𝑅 → (𝑟 ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp))
11 fveq2 6822 . . . . . 6 (𝑟 = 𝑅 → (UnifSt‘𝑟) = (UnifSt‘𝑅))
12 fveq2 6822 . . . . . . . . 9 (𝑟 = 𝑅 → (dist‘𝑟) = (dist‘𝑅))
13 fveq2 6822 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
14 isrrext.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1513, 14eqtr4di 2784 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
1615sqxpeqd 5646 . . . . . . . . 9 (𝑟 = 𝑅 → ((Base‘𝑟) × (Base‘𝑟)) = (𝐵 × 𝐵))
1712, 16reseq12d 5928 . . . . . . . 8 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = ((dist‘𝑅) ↾ (𝐵 × 𝐵)))
18 isrrext.v . . . . . . . 8 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
1917, 18eqtr4di 2784 . . . . . . 7 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = 𝐷)
2019fveq2d 6826 . . . . . 6 (𝑟 = 𝑅 → (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) = (metUnif‘𝐷))
2111, 20eqeq12d 2747 . . . . 5 (𝑟 = 𝑅 → ((UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) ↔ (UnifSt‘𝑅) = (metUnif‘𝐷)))
2210, 21anbi12d 632 . . . 4 (𝑟 = 𝑅 → ((𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) ↔ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
239, 22anbi12d 632 . . 3 (𝑟 = 𝑅 → ((((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) ↔ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
24 df-rrext 34012 . . 3 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
2523, 24elrab2 3645 . 2 (𝑅 ∈ ℝExt ↔ (𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
26 3anass 1094 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
272, 25, 263bitr4i 303 1 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896   × cxp 5612  cres 5616  cfv 6481  0cc0 11006  Basecbs 17120  distcds 17170  DivRingcdr 20644  metUnifcmetu 21282  ℤModczlm 21437  chrcchr 21438  UnifStcuss 24168  CUnifSpccusp 24211  NrmRingcnrg 24494  NrmModcnlm 24495   ℝExt crrext 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-rrext 34012
This theorem is referenced by:  rrextnrg  34014  rrextdrg  34015  rrextnlm  34016  rrextchr  34017  rrextcusp  34018  rrextust  34021  rerrext  34022  cnrrext  34023
  Copyright terms: Public domain W3C validator