Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   GIF version

Theorem isrrext 31950
Description: Express the property "𝑅 is an extension of ". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b 𝐵 = (Base‘𝑅)
isrrext.v 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
isrrext.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
isrrext (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))

Proof of Theorem isrrext
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . 3 (𝑅 ∈ (NrmRing ∩ DivRing) ↔ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
21anbi1i 624 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
3 fveq2 6774 . . . . . . 7 (𝑟 = 𝑅 → (ℤMod‘𝑟) = (ℤMod‘𝑅))
43eleq1d 2823 . . . . . 6 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod))
5 isrrext.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
65eleq1i 2829 . . . . . 6 (𝑍 ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod)
74, 6bitr4di 289 . . . . 5 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ 𝑍 ∈ NrmMod))
8 fveqeq2 6783 . . . . 5 (𝑟 = 𝑅 → ((chr‘𝑟) = 0 ↔ (chr‘𝑅) = 0))
97, 8anbi12d 631 . . . 4 (𝑟 = 𝑅 → (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ↔ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)))
10 eleq1 2826 . . . . 5 (𝑟 = 𝑅 → (𝑟 ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp))
11 fveq2 6774 . . . . . 6 (𝑟 = 𝑅 → (UnifSt‘𝑟) = (UnifSt‘𝑅))
12 fveq2 6774 . . . . . . . . 9 (𝑟 = 𝑅 → (dist‘𝑟) = (dist‘𝑅))
13 fveq2 6774 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
14 isrrext.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1513, 14eqtr4di 2796 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
1615sqxpeqd 5621 . . . . . . . . 9 (𝑟 = 𝑅 → ((Base‘𝑟) × (Base‘𝑟)) = (𝐵 × 𝐵))
1712, 16reseq12d 5892 . . . . . . . 8 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = ((dist‘𝑅) ↾ (𝐵 × 𝐵)))
18 isrrext.v . . . . . . . 8 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
1917, 18eqtr4di 2796 . . . . . . 7 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = 𝐷)
2019fveq2d 6778 . . . . . 6 (𝑟 = 𝑅 → (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) = (metUnif‘𝐷))
2111, 20eqeq12d 2754 . . . . 5 (𝑟 = 𝑅 → ((UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) ↔ (UnifSt‘𝑅) = (metUnif‘𝐷)))
2210, 21anbi12d 631 . . . 4 (𝑟 = 𝑅 → ((𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) ↔ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
239, 22anbi12d 631 . . 3 (𝑟 = 𝑅 → ((((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) ↔ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
24 df-rrext 31949 . . 3 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
2523, 24elrab2 3627 . 2 (𝑅 ∈ ℝExt ↔ (𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
26 3anass 1094 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
272, 25, 263bitr4i 303 1 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886   × cxp 5587  cres 5591  cfv 6433  0cc0 10871  Basecbs 16912  distcds 16971  DivRingcdr 19991  metUnifcmetu 20588  ℤModczlm 20702  chrcchr 20703  UnifStcuss 23405  CUnifSpccusp 23449  NrmRingcnrg 23735  NrmModcnlm 23736   ℝExt crrext 31944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441  df-rrext 31949
This theorem is referenced by:  rrextnrg  31951  rrextdrg  31952  rrextnlm  31953  rrextchr  31954  rrextcusp  31955  rrextust  31958  rerrext  31959  cnrrext  31960
  Copyright terms: Public domain W3C validator