Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   GIF version

Theorem isrrext 32968
Description: Express the property "𝑅 is an extension of ℝ". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b 𝐡 = (Baseβ€˜π‘…)
isrrext.v 𝐷 = ((distβ€˜π‘…) β†Ύ (𝐡 Γ— 𝐡))
isrrext.z 𝑍 = (β„€Modβ€˜π‘…)
Assertion
Ref Expression
isrrext (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·))))

Proof of Theorem isrrext
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elin 3963 . . 3 (𝑅 ∈ (NrmRing ∩ DivRing) ↔ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
21anbi1i 624 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))))
3 fveq2 6888 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (β„€Modβ€˜π‘Ÿ) = (β„€Modβ€˜π‘…))
43eleq1d 2818 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ↔ (β„€Modβ€˜π‘…) ∈ NrmMod))
5 isrrext.z . . . . . . 7 𝑍 = (β„€Modβ€˜π‘…)
65eleq1i 2824 . . . . . 6 (𝑍 ∈ NrmMod ↔ (β„€Modβ€˜π‘…) ∈ NrmMod)
74, 6bitr4di 288 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ↔ 𝑍 ∈ NrmMod))
8 fveqeq2 6897 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((chrβ€˜π‘Ÿ) = 0 ↔ (chrβ€˜π‘…) = 0))
97, 8anbi12d 631 . . . 4 (π‘Ÿ = 𝑅 β†’ (((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ∧ (chrβ€˜π‘Ÿ) = 0) ↔ (𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0)))
10 eleq1 2821 . . . . 5 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp))
11 fveq2 6888 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (UnifStβ€˜π‘Ÿ) = (UnifStβ€˜π‘…))
12 fveq2 6888 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (distβ€˜π‘Ÿ) = (distβ€˜π‘…))
13 fveq2 6888 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
14 isrrext.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘…)
1513, 14eqtr4di 2790 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
1615sqxpeqd 5707 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ)) = (𝐡 Γ— 𝐡))
1712, 16reseq12d 5980 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ))) = ((distβ€˜π‘…) β†Ύ (𝐡 Γ— 𝐡)))
18 isrrext.v . . . . . . . 8 𝐷 = ((distβ€˜π‘…) β†Ύ (𝐡 Γ— 𝐡))
1917, 18eqtr4di 2790 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ))) = 𝐷)
2019fveq2d 6892 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ)))) = (metUnifβ€˜π·))
2111, 20eqeq12d 2748 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((UnifStβ€˜π‘Ÿ) = (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ)))) ↔ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))
2210, 21anbi12d 631 . . . 4 (π‘Ÿ = 𝑅 β†’ ((π‘Ÿ ∈ CUnifSp ∧ (UnifStβ€˜π‘Ÿ) = (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ))))) ↔ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·))))
239, 22anbi12d 631 . . 3 (π‘Ÿ = 𝑅 β†’ ((((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ∧ (chrβ€˜π‘Ÿ) = 0) ∧ (π‘Ÿ ∈ CUnifSp ∧ (UnifStβ€˜π‘Ÿ) = (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ)))))) ↔ ((𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))))
24 df-rrext 32967 . . 3 ℝExt = {π‘Ÿ ∈ (NrmRing ∩ DivRing) ∣ (((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ∧ (chrβ€˜π‘Ÿ) = 0) ∧ (π‘Ÿ ∈ CUnifSp ∧ (UnifStβ€˜π‘Ÿ) = (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ))))))}
2523, 24elrab2 3685 . 2 (𝑅 ∈ ℝExt ↔ (𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))))
26 3anass 1095 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·)))))
272, 25, 263bitr4i 302 1 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chrβ€˜π‘…) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifStβ€˜π‘…) = (metUnifβ€˜π·))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3946   Γ— cxp 5673   β†Ύ cres 5677  β€˜cfv 6540  0cc0 11106  Basecbs 17140  distcds 17202  DivRingcdr 20307  metUnifcmetu 20927  β„€Modczlm 21041  chrcchr 21042  UnifStcuss 23749  CUnifSpccusp 23793  NrmRingcnrg 24079  NrmModcnlm 24080   ℝExt crrext 32962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-res 5687  df-iota 6492  df-fv 6548  df-rrext 32967
This theorem is referenced by:  rrextnrg  32969  rrextdrg  32970  rrextnlm  32971  rrextchr  32972  rrextcusp  32973  rrextust  32976  rerrext  32977  cnrrext  32978
  Copyright terms: Public domain W3C validator