MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rtrcl Structured version   Visualization version   GIF version

Definition df-rtrcl 14339
Description: Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011.)
Assertion
Ref Expression
df-rtrcl t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑥,𝑧

Detailed syntax breakdown of Definition df-rtrcl
StepHypRef Expression
1 crtcl 14337 . 2 class t*
2 vx . . 3 setvar 𝑥
3 cvv 3469 . . 3 class V
4 cid 5436 . . . . . . . 8 class I
52cv 1537 . . . . . . . . . 10 class 𝑥
65cdm 5532 . . . . . . . . 9 class dom 𝑥
75crn 5533 . . . . . . . . 9 class ran 𝑥
86, 7cun 3906 . . . . . . . 8 class (dom 𝑥 ∪ ran 𝑥)
94, 8cres 5534 . . . . . . 7 class ( I ↾ (dom 𝑥 ∪ ran 𝑥))
10 vz . . . . . . . 8 setvar 𝑧
1110cv 1537 . . . . . . 7 class 𝑧
129, 11wss 3908 . . . . . 6 wff ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧
135, 11wss 3908 . . . . . 6 wff 𝑥𝑧
1411, 11ccom 5536 . . . . . . 7 class (𝑧𝑧)
1514, 11wss 3908 . . . . . 6 wff (𝑧𝑧) ⊆ 𝑧
1612, 13, 15w3a 1084 . . . . 5 wff (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)
1716, 10cab 2800 . . . 4 class {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
1817cint 4851 . . 3 class {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
192, 3, 18cmpt 5122 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
201, 19wceq 1538 1 wff t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
This definition is referenced by:  dfrtrcl2  14412  dfrtrcl5  40263  dfrtrcl3  40368
  Copyright terms: Public domain W3C validator