Detailed syntax breakdown of Definition df-rtrcl
Step | Hyp | Ref
| Expression |
1 | | crtcl 14625 |
. 2
class
t* |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | cid 5479 |
. . . . . . . 8
class
I |
5 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
6 | 5 | cdm 5580 |
. . . . . . . . 9
class dom 𝑥 |
7 | 5 | crn 5581 |
. . . . . . . . 9
class ran 𝑥 |
8 | 6, 7 | cun 3881 |
. . . . . . . 8
class (dom
𝑥 ∪ ran 𝑥) |
9 | 4, 8 | cres 5582 |
. . . . . . 7
class ( I
↾ (dom 𝑥 ∪ ran
𝑥)) |
10 | | vz |
. . . . . . . 8
setvar 𝑧 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑧 |
12 | 9, 11 | wss 3883 |
. . . . . 6
wff ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 |
13 | 5, 11 | wss 3883 |
. . . . . 6
wff 𝑥 ⊆ 𝑧 |
14 | 11, 11 | ccom 5584 |
. . . . . . 7
class (𝑧 ∘ 𝑧) |
15 | 14, 11 | wss 3883 |
. . . . . 6
wff (𝑧 ∘ 𝑧) ⊆ 𝑧 |
16 | 12, 13, 15 | w3a 1085 |
. . . . 5
wff (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) |
17 | 16, 10 | cab 2715 |
. . . 4
class {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
18 | 17 | cint 4876 |
. . 3
class ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
19 | 2, 3, 18 | cmpt 5153 |
. 2
class (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
20 | 1, 19 | wceq 1539 |
1
wff t* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |