Detailed syntax breakdown of Definition df-rtrcl
| Step | Hyp | Ref
| Expression |
| 1 | | crtcl 15025 |
. 2
class
t* |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | cid 5577 |
. . . . . . . 8
class
I |
| 5 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 6 | 5 | cdm 5685 |
. . . . . . . . 9
class dom 𝑥 |
| 7 | 5 | crn 5686 |
. . . . . . . . 9
class ran 𝑥 |
| 8 | 6, 7 | cun 3949 |
. . . . . . . 8
class (dom
𝑥 ∪ ran 𝑥) |
| 9 | 4, 8 | cres 5687 |
. . . . . . 7
class ( I
↾ (dom 𝑥 ∪ ran
𝑥)) |
| 10 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 12 | 9, 11 | wss 3951 |
. . . . . 6
wff ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 |
| 13 | 5, 11 | wss 3951 |
. . . . . 6
wff 𝑥 ⊆ 𝑧 |
| 14 | 11, 11 | ccom 5689 |
. . . . . . 7
class (𝑧 ∘ 𝑧) |
| 15 | 14, 11 | wss 3951 |
. . . . . 6
wff (𝑧 ∘ 𝑧) ⊆ 𝑧 |
| 16 | 12, 13, 15 | w3a 1087 |
. . . . 5
wff (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) |
| 17 | 16, 10 | cab 2714 |
. . . 4
class {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 18 | 17 | cint 4946 |
. . 3
class ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 19 | 2, 3, 18 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 20 | 1, 19 | wceq 1540 |
1
wff t* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |