![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trcleq1 | Structured version Visualization version GIF version |
Description: Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
trcleq1 | ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1 14131 | 1 ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 {cab 2763 ⊆ wss 3792 ∩ cint 4710 ∘ ccom 5359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-ral 3095 df-in 3799 df-ss 3806 df-int 4711 |
This theorem is referenced by: trclfv 14148 |
Copyright terms: Public domain | W3C validator |