MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq1 Structured version   Visualization version   GIF version

Theorem trcleq1 14955
Description: Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
trcleq1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟

Proof of Theorem trcleq1
StepHypRef Expression
1 cleq1 14949 1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  {cab 2707  wss 3914   cint 4910  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ral 3045  df-rex 3054  df-ss 3931  df-int 4911
This theorem is referenced by:  trclfv  14966
  Copyright terms: Public domain W3C validator