MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq1 Structured version   Visualization version   GIF version

Theorem trcleq1 14700
Description: Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
trcleq1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟

Proof of Theorem trcleq1
StepHypRef Expression
1 cleq1 14694 1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  {cab 2715  wss 3887   cint 4879  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-int 4880
This theorem is referenced by:  trclfv  14711
  Copyright terms: Public domain W3C validator