Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . 6
β’ ((π β§ π
β V) β (π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) = (π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})) |
2 | | dmeq 5856 |
. . . . . . . . . . . . 13
β’ (π₯ = π
β dom π₯ = dom π
) |
3 | | rneq 5888 |
. . . . . . . . . . . . 13
β’ (π₯ = π
β ran π₯ = ran π
) |
4 | 2, 3 | uneq12d 4123 |
. . . . . . . . . . . 12
β’ (π₯ = π
β (dom π₯ βͺ ran π₯) = (dom π
βͺ ran π
)) |
5 | 4 | reseq2d 5934 |
. . . . . . . . . . 11
β’ (π₯ = π
β ( I βΎ (dom π₯ βͺ ran π₯)) = ( I βΎ (dom π
βͺ ran π
))) |
6 | 5 | sseq1d 3974 |
. . . . . . . . . 10
β’ (π₯ = π
β (( I βΎ (dom π₯ βͺ ran π₯)) β π§ β ( I βΎ (dom π
βͺ ran π
)) β π§)) |
7 | | id 22 |
. . . . . . . . . . 11
β’ (π₯ = π
β π₯ = π
) |
8 | 7 | sseq1d 3974 |
. . . . . . . . . 10
β’ (π₯ = π
β (π₯ β π§ β π
β π§)) |
9 | 6, 8 | 3anbi12d 1438 |
. . . . . . . . 9
β’ (π₯ = π
β ((( I βΎ (dom π₯ βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§))) |
10 | 9 | abbidv 2807 |
. . . . . . . 8
β’ (π₯ = π
β {π§ β£ (( I βΎ (dom π₯ βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)} = {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
11 | 10 | inteqd 4911 |
. . . . . . 7
β’ (π₯ = π
β β© {π§ β£ (( I βΎ (dom π₯ βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)} = β© {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
12 | 11 | adantl 483 |
. . . . . 6
β’ (((π β§ π
β V) β§ π₯ = π
) β β© {π§ β£ (( I βΎ (dom π₯ βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)} = β© {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
13 | | simpr 486 |
. . . . . 6
β’ ((π β§ π
β V) β π
β V) |
14 | | dfrtrcl2.1 |
. . . . . . . . . . . . 13
β’ (π β Rel π
) |
15 | | relfld 6224 |
. . . . . . . . . . . . 13
β’ (Rel
π
β βͺ βͺ π
= (dom π
βͺ ran π
)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . 12
β’ (π β βͺ βͺ π
= (dom π
βͺ ran π
)) |
17 | 16 | eqcomd 2744 |
. . . . . . . . . . 11
β’ (π β (dom π
βͺ ran π
) = βͺ βͺ π
) |
18 | 17 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π
β V) β (dom π
βͺ ran π
) = βͺ βͺ π
) |
19 | 14 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π
β V) β Rel π
) |
20 | 19, 13 | rtrclreclem2 14878 |
. . . . . . . . . . 11
β’ ((π β§ π
β V) β ( I βΎ βͺ βͺ π
) β (t*recβπ
)) |
21 | | id 22 |
. . . . . . . . . . . . 13
β’ ((dom
π
βͺ ran π
) = βͺ
βͺ π
β (dom π
βͺ ran π
) = βͺ βͺ π
) |
22 | 21 | reseq2d 5934 |
. . . . . . . . . . . 12
β’ ((dom
π
βͺ ran π
) = βͺ
βͺ π
β ( I βΎ (dom π
βͺ ran π
)) = ( I βΎ βͺ βͺ π
)) |
23 | 22 | sseq1d 3974 |
. . . . . . . . . . 11
β’ ((dom
π
βͺ ran π
) = βͺ
βͺ π
β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β ( I βΎ βͺ βͺ π
) β (t*recβπ
))) |
24 | 20, 23 | syl5ibr 246 |
. . . . . . . . . 10
β’ ((dom
π
βͺ ran π
) = βͺ
βͺ π
β ((π β§ π
β V) β ( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
))) |
25 | 18, 24 | mpcom 38 |
. . . . . . . . 9
β’ ((π β§ π
β V) β ( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
)) |
26 | 13 | rtrclreclem1 14876 |
. . . . . . . . 9
β’ ((π β§ π
β V) β π
β (t*recβπ
)) |
27 | 14 | rtrclreclem3 14879 |
. . . . . . . . . 10
β’ (π β ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)) |
28 | 27 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π
β V) β ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)) |
29 | | fvex 6851 |
. . . . . . . . . . 11
β’
(t*recβπ
)
β V |
30 | | sseq2 3969 |
. . . . . . . . . . . . . 14
β’ (π§ = (t*recβπ
) β (( I βΎ (dom π
βͺ ran π
)) β π§ β ( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
))) |
31 | | sseq2 3969 |
. . . . . . . . . . . . . 14
β’ (π§ = (t*recβπ
) β (π
β π§ β π
β (t*recβπ
))) |
32 | | id 22 |
. . . . . . . . . . . . . . . 16
β’ (π§ = (t*recβπ
) β π§ = (t*recβπ
)) |
33 | 32, 32 | coeq12d 5817 |
. . . . . . . . . . . . . . 15
β’ (π§ = (t*recβπ
) β (π§ β π§) = ((t*recβπ
) β (t*recβπ
))) |
34 | 33, 32 | sseq12d 3976 |
. . . . . . . . . . . . . 14
β’ (π§ = (t*recβπ
) β ((π§ β π§) β π§ β ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
))) |
35 | 30, 31, 34 | 3anbi123d 1437 |
. . . . . . . . . . . . 13
β’ (π§ = (t*recβπ
) β ((( I βΎ (dom
π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)))) |
36 | 35 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β (π§ = (t*recβπ
) β ((( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
))))) |
37 | 36 | alrimiv 1931 |
. . . . . . . . . . 11
β’ (π β βπ§(π§ = (t*recβπ
) β ((( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
))))) |
38 | | elabgt 3623 |
. . . . . . . . . . 11
β’
(((t*recβπ
)
β V β§ βπ§(π§ = (t*recβπ
) β ((( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
))))) β ((t*recβπ
) β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)))) |
39 | 29, 37, 38 | sylancr 588 |
. . . . . . . . . 10
β’ (π β ((t*recβπ
) β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)))) |
40 | 39 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π
β V) β ((t*recβπ
) β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (( I βΎ (dom π
βͺ ran π
)) β (t*recβπ
) β§ π
β (t*recβπ
) β§ ((t*recβπ
) β (t*recβπ
)) β (t*recβπ
)))) |
41 | 25, 26, 28, 40 | mpbir3and 1343 |
. . . . . . . 8
β’ ((π β§ π
β V) β (t*recβπ
) β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
42 | 41 | ne0d 4294 |
. . . . . . 7
β’ ((π β§ π
β V) β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β β
) |
43 | | intex 5293 |
. . . . . . 7
β’ ({π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β β
β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β V) |
44 | 42, 43 | sylib 217 |
. . . . . 6
β’ ((π β§ π
β V) β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β V) |
45 | 1, 12, 13, 44 | fvmptd 6951 |
. . . . 5
β’ ((π β§ π
β V) β ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
) = β© {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
46 | | intss1 4923 |
. . . . . . 7
β’
((t*recβπ
)
β {π§ β£ (( I
βΎ (dom π
βͺ ran
π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β β© {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (t*recβπ
)) |
47 | 41, 46 | syl 17 |
. . . . . 6
β’ ((π β§ π
β V) β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (t*recβπ
)) |
48 | | vex 3448 |
. . . . . . . . . . 11
β’ π β V |
49 | | sseq2 3969 |
. . . . . . . . . . . 12
β’ (π§ = π β (( I βΎ (dom π
βͺ ran π
)) β π§ β ( I βΎ (dom π
βͺ ran π
)) β π )) |
50 | | sseq2 3969 |
. . . . . . . . . . . 12
β’ (π§ = π β (π
β π§ β π
β π )) |
51 | | id 22 |
. . . . . . . . . . . . . 14
β’ (π§ = π β π§ = π ) |
52 | 51, 51 | coeq12d 5817 |
. . . . . . . . . . . . 13
β’ (π§ = π β (π§ β π§) = (π β π )) |
53 | 52, 51 | sseq12d 3976 |
. . . . . . . . . . . 12
β’ (π§ = π β ((π§ β π§) β π§ β (π β π ) β π )) |
54 | 49, 50, 53 | 3anbi123d 1437 |
. . . . . . . . . . 11
β’ (π§ = π β ((( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§) β (( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ))) |
55 | 48, 54 | elab 3629 |
. . . . . . . . . 10
β’ (π β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π )) |
56 | 14 | rtrclreclem4 14880 |
. . . . . . . . . . 11
β’ (π β βπ ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |
57 | 56 | 19.21bi 2183 |
. . . . . . . . . 10
β’ (π β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |
58 | 55, 57 | biimtrid 241 |
. . . . . . . . 9
β’ (π β (π β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β (t*recβπ
) β π )) |
59 | 58 | ralrimiv 3141 |
. . . . . . . 8
β’ (π β βπ β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} (t*recβπ
) β π ) |
60 | | ssint 4924 |
. . . . . . . 8
β’
((t*recβπ
)
β β© {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} β βπ β {π§ β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} (t*recβπ
) β π ) |
61 | 59, 60 | sylibr 233 |
. . . . . . 7
β’ (π β (t*recβπ
) β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
62 | 61 | adantr 482 |
. . . . . 6
β’ ((π β§ π
β V) β (t*recβπ
) β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)}) |
63 | 47, 62 | eqssd 3960 |
. . . . 5
β’ ((π β§ π
β V) β β© {π§
β£ (( I βΎ (dom π
βͺ ran π
)) β π§ β§ π
β π§ β§ (π§ β π§) β π§)} = (t*recβπ
)) |
64 | 45, 63 | eqtrd 2778 |
. . . 4
β’ ((π β§ π
β V) β ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
) = (t*recβπ
)) |
65 | | df-rtrcl 14807 |
. . . . 5
β’ t* =
(π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) |
66 | | fveq1 6837 |
. . . . . . 7
β’ (t* =
(π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) β (t*βπ
) = ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
)) |
67 | 66 | eqeq1d 2740 |
. . . . . 6
β’ (t* =
(π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) β ((t*βπ
) = (t*recβπ
) β ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
) = (t*recβπ
))) |
68 | 67 | imbi2d 341 |
. . . . 5
β’ (t* =
(π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) β (((π β§ π
β V) β (t*βπ
) = (t*recβπ
)) β ((π β§ π
β V) β ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
) = (t*recβπ
)))) |
69 | 65, 68 | ax-mp 5 |
. . . 4
β’ (((π β§ π
β V) β (t*βπ
) = (t*recβπ
)) β ((π β§ π
β V) β ((π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)})βπ
) = (t*recβπ
))) |
70 | 64, 69 | mpbir 230 |
. . 3
β’ ((π β§ π
β V) β (t*βπ
) = (t*recβπ
)) |
71 | 70 | ex 414 |
. 2
β’ (π β (π
β V β (t*βπ
) = (t*recβπ
))) |
72 | | fvprc 6830 |
. . 3
β’ (Β¬
π
β V β
(t*βπ
) =
β
) |
73 | | fvprc 6830 |
. . . 4
β’ (Β¬
π
β V β
(t*recβπ
) =
β
) |
74 | 73 | eqcomd 2744 |
. . 3
β’ (Β¬
π
β V β β
=
(t*recβπ
)) |
75 | 72, 74 | eqtrd 2778 |
. 2
β’ (Β¬
π
β V β
(t*βπ
) =
(t*recβπ
)) |
76 | 71, 75 | pm2.61d1 180 |
1
β’ (π β (t*βπ
) = (t*recβπ
)) |