MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrcl2 Structured version   Visualization version   GIF version

Theorem dfrtrcl2 14421
Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
drrtrcl2.1 (𝜑 → Rel 𝑅)
drrtrcl2.2 (𝜑𝑅 ∈ V)
Assertion
Ref Expression
dfrtrcl2 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))

Proof of Theorem dfrtrcl2
Dummy variables 𝑥 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . . . 4 (𝜑 → (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
2 dmeq 5772 . . . . . . . . . . 11 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
3 rneq 5806 . . . . . . . . . . 11 (𝑥 = 𝑅 → ran 𝑥 = ran 𝑅)
42, 3uneq12d 4140 . . . . . . . . . 10 (𝑥 = 𝑅 → (dom 𝑥 ∪ ran 𝑥) = (dom 𝑅 ∪ ran 𝑅))
54reseq2d 5853 . . . . . . . . 9 (𝑥 = 𝑅 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
65sseq1d 3998 . . . . . . . 8 (𝑥 = 𝑅 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧))
7 id 22 . . . . . . . . 9 (𝑥 = 𝑅𝑥 = 𝑅)
87sseq1d 3998 . . . . . . . 8 (𝑥 = 𝑅 → (𝑥𝑧𝑅𝑧))
96, 83anbi12d 1433 . . . . . . 7 (𝑥 = 𝑅 → ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)))
109abbidv 2885 . . . . . 6 (𝑥 = 𝑅 → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1110inteqd 4881 . . . . 5 (𝑥 = 𝑅 {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1211adantl 484 . . . 4 ((𝜑𝑥 = 𝑅) → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
13 drrtrcl2.2 . . . 4 (𝜑𝑅 ∈ V)
14 drrtrcl2.1 . . . . . . . . . 10 (𝜑 → Rel 𝑅)
15 relfld 6126 . . . . . . . . . 10 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1614, 15syl 17 . . . . . . . . 9 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1716eqcomd 2827 . . . . . . . 8 (𝜑 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1814, 13rtrclreclem1 14417 . . . . . . . . 9 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
19 id 22 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
2019reseq2d 5853 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ 𝑅))
2120sseq1d 3998 . . . . . . . . 9 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)))
2218, 21syl5ibr 248 . . . . . . . 8 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
2317, 22mpcom 38 . . . . . . 7 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅))
2413rtrclreclem2 14418 . . . . . . 7 (𝜑𝑅 ⊆ (t*rec‘𝑅))
2514, 13rtrclreclem3 14419 . . . . . . 7 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
26 fvex 6683 . . . . . . . 8 (t*rec‘𝑅) ∈ V
27 sseq2 3993 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
28 sseq2 3993 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → (𝑅𝑧𝑅 ⊆ (t*rec‘𝑅)))
29 id 22 . . . . . . . . . . . . 13 (𝑧 = (t*rec‘𝑅) → 𝑧 = (t*rec‘𝑅))
3029, 29coeq12d 5735 . . . . . . . . . . . 12 (𝑧 = (t*rec‘𝑅) → (𝑧𝑧) = ((t*rec‘𝑅) ∘ (t*rec‘𝑅)))
3130, 29sseq12d 4000 . . . . . . . . . . 11 (𝑧 = (t*rec‘𝑅) → ((𝑧𝑧) ⊆ 𝑧 ↔ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))
3227, 28, 313anbi123d 1432 . . . . . . . . . 10 (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3332a1i 11 . . . . . . . . 9 (𝜑 → (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
3433alrimiv 1928 . . . . . . . 8 (𝜑 → ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
35 elabgt 3663 . . . . . . . 8 (((t*rec‘𝑅) ∈ V ∧ ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3626, 34, 35sylancr 589 . . . . . . 7 (𝜑 → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3723, 24, 25, 36mpbir3and 1338 . . . . . 6 (𝜑 → (t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3837ne0d 4301 . . . . 5 (𝜑 → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅)
39 intex 5240 . . . . 5 ({𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅ ↔ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
4038, 39sylib 220 . . . 4 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
411, 12, 13, 40fvmptd 6775 . . 3 (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
42 intss1 4891 . . . . 5 ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
4337, 42syl 17 . . . 4 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
44 vex 3497 . . . . . . . 8 𝑠 ∈ V
45 sseq2 3993 . . . . . . . . 9 (𝑧 = 𝑠 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
46 sseq2 3993 . . . . . . . . 9 (𝑧 = 𝑠 → (𝑅𝑧𝑅𝑠))
47 id 22 . . . . . . . . . . 11 (𝑧 = 𝑠𝑧 = 𝑠)
4847, 47coeq12d 5735 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
4948, 47sseq12d 4000 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
5045, 46, 493anbi123d 1432 . . . . . . . 8 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
5144, 50elab 3667 . . . . . . 7 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
5214, 13rtrclreclem4 14420 . . . . . . . 8 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
535219.21bi 2188 . . . . . . 7 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
5451, 53syl5bi 244 . . . . . 6 (𝜑 → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (t*rec‘𝑅) ⊆ 𝑠))
5554ralrimiv 3181 . . . . 5 (𝜑 → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
56 ssint 4892 . . . . 5 ((t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
5755, 56sylibr 236 . . . 4 (𝜑 → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5843, 57eqssd 3984 . . 3 (𝜑 {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (t*rec‘𝑅))
5941, 58eqtrd 2856 . 2 (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))
60 df-rtrcl 14348 . . 3 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
61 fveq1 6669 . . . . 5 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (t*‘𝑅) = ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅))
6261eqeq1d 2823 . . . 4 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((t*‘𝑅) = (t*rec‘𝑅) ↔ ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6362imbi2d 343 . . 3 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) ↔ (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))))
6460, 63ax-mp 5 . 2 ((𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) ↔ (𝜑 → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6559, 64mpbir 233 1 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083  wal 1535   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wral 3138  Vcvv 3494  cun 3934  wss 3936  c0 4291   cuni 4838   cint 4876  cmpt 5146   I cid 5459  dom cdm 5555  ran crn 5556  cres 5557  ccom 5559  Rel wrel 5560  cfv 6355  t*crtcl 14346  t*reccrtrcl 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-rtrcl 14348  df-relexp 14380  df-rtrclrec 14415
This theorem is referenced by:  rtrclind  14424
  Copyright terms: Public domain W3C validator