MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrcl2 Structured version   Visualization version   GIF version

Theorem dfrtrcl2 14947
Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrcl2.1 (𝜑 → Rel 𝑅)
Assertion
Ref Expression
dfrtrcl2 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))

Proof of Theorem dfrtrcl2
Dummy variables 𝑥 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . . 6 ((𝜑𝑅 ∈ V) → (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
2 dmeq 5859 . . . . . . . . . . . . 13 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
3 rneq 5891 . . . . . . . . . . . . 13 (𝑥 = 𝑅 → ran 𝑥 = ran 𝑅)
42, 3uneq12d 4124 . . . . . . . . . . . 12 (𝑥 = 𝑅 → (dom 𝑥 ∪ ran 𝑥) = (dom 𝑅 ∪ ran 𝑅))
54reseq2d 5937 . . . . . . . . . . 11 (𝑥 = 𝑅 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
65sseq1d 3975 . . . . . . . . . 10 (𝑥 = 𝑅 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧))
7 id 22 . . . . . . . . . . 11 (𝑥 = 𝑅𝑥 = 𝑅)
87sseq1d 3975 . . . . . . . . . 10 (𝑥 = 𝑅 → (𝑥𝑧𝑅𝑧))
96, 83anbi12d 1437 . . . . . . . . 9 (𝑥 = 𝑅 → ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)))
109abbidv 2805 . . . . . . . 8 (𝑥 = 𝑅 → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1110inteqd 4912 . . . . . . 7 (𝑥 = 𝑅 {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1211adantl 482 . . . . . 6 (((𝜑𝑅 ∈ V) ∧ 𝑥 = 𝑅) → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
13 simpr 485 . . . . . 6 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
14 dfrtrcl2.1 . . . . . . . . . . . . 13 (𝜑 → Rel 𝑅)
15 relfld 6227 . . . . . . . . . . . . 13 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1614, 15syl 17 . . . . . . . . . . . 12 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1716eqcomd 2742 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1817adantr 481 . . . . . . . . . 10 ((𝜑𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1914adantr 481 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ V) → Rel 𝑅)
2019, 13rtrclreclem2 14944 . . . . . . . . . . 11 ((𝜑𝑅 ∈ V) → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
21 id 22 . . . . . . . . . . . . 13 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
2221reseq2d 5937 . . . . . . . . . . . 12 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ 𝑅))
2322sseq1d 3975 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)))
2420, 23syl5ibr 245 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ((𝜑𝑅 ∈ V) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
2518, 24mpcom 38 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅))
2613rtrclreclem1 14942 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → 𝑅 ⊆ (t*rec‘𝑅))
2714rtrclreclem3 14945 . . . . . . . . . 10 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
2827adantr 481 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
29 fvex 6855 . . . . . . . . . . 11 (t*rec‘𝑅) ∈ V
30 sseq2 3970 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
31 sseq2 3970 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → (𝑅𝑧𝑅 ⊆ (t*rec‘𝑅)))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (t*rec‘𝑅) → 𝑧 = (t*rec‘𝑅))
3332, 32coeq12d 5820 . . . . . . . . . . . . . . 15 (𝑧 = (t*rec‘𝑅) → (𝑧𝑧) = ((t*rec‘𝑅) ∘ (t*rec‘𝑅)))
3433, 32sseq12d 3977 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → ((𝑧𝑧) ⊆ 𝑧 ↔ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))
3530, 31, 343anbi123d 1436 . . . . . . . . . . . . 13 (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
3736alrimiv 1930 . . . . . . . . . . 11 (𝜑 → ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
38 elabgt 3624 . . . . . . . . . . 11 (((t*rec‘𝑅) ∈ V ∧ ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3929, 37, 38sylancr 587 . . . . . . . . . 10 (𝜑 → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
4039adantr 481 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
4125, 26, 28, 40mpbir3and 1342 . . . . . . . 8 ((𝜑𝑅 ∈ V) → (t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
4241ne0d 4295 . . . . . . 7 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅)
43 intex 5294 . . . . . . 7 ({𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅ ↔ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
4442, 43sylib 217 . . . . . 6 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
451, 12, 13, 44fvmptd 6955 . . . . 5 ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
46 intss1 4924 . . . . . . 7 ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
4741, 46syl 17 . . . . . 6 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
48 vex 3449 . . . . . . . . . . 11 𝑠 ∈ V
49 sseq2 3970 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
50 sseq2 3970 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (𝑅𝑧𝑅𝑠))
51 id 22 . . . . . . . . . . . . . 14 (𝑧 = 𝑠𝑧 = 𝑠)
5251, 51coeq12d 5820 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
5352, 51sseq12d 3977 . . . . . . . . . . . 12 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
5449, 50, 533anbi123d 1436 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
5548, 54elab 3630 . . . . . . . . . 10 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
5614rtrclreclem4 14946 . . . . . . . . . . 11 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
575619.21bi 2182 . . . . . . . . . 10 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
5855, 57biimtrid 241 . . . . . . . . 9 (𝜑 → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (t*rec‘𝑅) ⊆ 𝑠))
5958ralrimiv 3142 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
60 ssint 4925 . . . . . . . 8 ((t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
6159, 60sylibr 233 . . . . . . 7 (𝜑 → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6261adantr 481 . . . . . 6 ((𝜑𝑅 ∈ V) → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6347, 62eqssd 3961 . . . . 5 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (t*rec‘𝑅))
6445, 63eqtrd 2776 . . . 4 ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))
65 df-rtrcl 14873 . . . . 5 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
66 fveq1 6841 . . . . . . 7 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (t*‘𝑅) = ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅))
6766eqeq1d 2738 . . . . . 6 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((t*‘𝑅) = (t*rec‘𝑅) ↔ ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6867imbi2d 340 . . . . 5 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅)) ↔ ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))))
6965, 68ax-mp 5 . . . 4 (((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅)) ↔ ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
7064, 69mpbir 230 . . 3 ((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅))
7170ex 413 . 2 (𝜑 → (𝑅 ∈ V → (t*‘𝑅) = (t*rec‘𝑅)))
72 fvprc 6834 . . 3 𝑅 ∈ V → (t*‘𝑅) = ∅)
73 fvprc 6834 . . . 4 𝑅 ∈ V → (t*rec‘𝑅) = ∅)
7473eqcomd 2742 . . 3 𝑅 ∈ V → ∅ = (t*rec‘𝑅))
7572, 74eqtrd 2776 . 2 𝑅 ∈ V → (t*‘𝑅) = (t*rec‘𝑅))
7671, 75pm2.61d1 180 1 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  Vcvv 3445  cun 3908  wss 3910  c0 4282   cuni 4865   cint 4907  cmpt 5188   I cid 5530  dom cdm 5633  ran crn 5634  cres 5635  ccom 5637  Rel wrel 5638  cfv 6496  t*crtcl 14871  t*reccrtrcl 14940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-rtrcl 14873  df-relexp 14905  df-rtrclrec 14941
This theorem is referenced by:  rtrclind  14950
  Copyright terms: Public domain W3C validator