MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrcl2 Structured version   Visualization version   GIF version

Theorem dfrtrcl2 15035
Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrcl2.1 (𝜑 → Rel 𝑅)
Assertion
Ref Expression
dfrtrcl2 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))

Proof of Theorem dfrtrcl2
Dummy variables 𝑥 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . . . 6 ((𝜑𝑅 ∈ V) → (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
2 dmeq 5870 . . . . . . . . . . . . 13 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
3 rneq 5903 . . . . . . . . . . . . 13 (𝑥 = 𝑅 → ran 𝑥 = ran 𝑅)
42, 3uneq12d 4135 . . . . . . . . . . . 12 (𝑥 = 𝑅 → (dom 𝑥 ∪ ran 𝑥) = (dom 𝑅 ∪ ran 𝑅))
54reseq2d 5953 . . . . . . . . . . 11 (𝑥 = 𝑅 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
65sseq1d 3981 . . . . . . . . . 10 (𝑥 = 𝑅 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧))
7 id 22 . . . . . . . . . . 11 (𝑥 = 𝑅𝑥 = 𝑅)
87sseq1d 3981 . . . . . . . . . 10 (𝑥 = 𝑅 → (𝑥𝑧𝑅𝑧))
96, 83anbi12d 1439 . . . . . . . . 9 (𝑥 = 𝑅 → ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)))
109abbidv 2796 . . . . . . . 8 (𝑥 = 𝑅 → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1110inteqd 4918 . . . . . . 7 (𝑥 = 𝑅 {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
1211adantl 481 . . . . . 6 (((𝜑𝑅 ∈ V) ∧ 𝑥 = 𝑅) → {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
13 simpr 484 . . . . . 6 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
14 dfrtrcl2.1 . . . . . . . . . . . . 13 (𝜑 → Rel 𝑅)
15 relfld 6251 . . . . . . . . . . . . 13 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1614, 15syl 17 . . . . . . . . . . . 12 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
1716eqcomd 2736 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
1914adantr 480 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ V) → Rel 𝑅)
2019, 13rtrclreclem2 15032 . . . . . . . . . . 11 ((𝜑𝑅 ∈ V) → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
21 id 22 . . . . . . . . . . . . 13 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (dom 𝑅 ∪ ran 𝑅) = 𝑅)
2221reseq2d 5953 . . . . . . . . . . . 12 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ 𝑅))
2322sseq1d 3981 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)))
2420, 23imbitrrid 246 . . . . . . . . . 10 ((dom 𝑅 ∪ ran 𝑅) = 𝑅 → ((𝜑𝑅 ∈ V) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
2518, 24mpcom 38 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅))
2613rtrclreclem1 15030 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → 𝑅 ⊆ (t*rec‘𝑅))
2714rtrclreclem3 15033 . . . . . . . . . 10 (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
2827adantr 480 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))
29 fvex 6874 . . . . . . . . . . 11 (t*rec‘𝑅) ∈ V
30 sseq2 3976 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅)))
31 sseq2 3976 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → (𝑅𝑧𝑅 ⊆ (t*rec‘𝑅)))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (t*rec‘𝑅) → 𝑧 = (t*rec‘𝑅))
3332, 32coeq12d 5831 . . . . . . . . . . . . . . 15 (𝑧 = (t*rec‘𝑅) → (𝑧𝑧) = ((t*rec‘𝑅) ∘ (t*rec‘𝑅)))
3433, 32sseq12d 3983 . . . . . . . . . . . . . 14 (𝑧 = (t*rec‘𝑅) → ((𝑧𝑧) ⊆ 𝑧 ↔ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))
3530, 31, 343anbi123d 1438 . . . . . . . . . . . . 13 (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3635a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
3736alrimiv 1927 . . . . . . . . . . 11 (𝜑 → ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)))))
38 elabgt 3641 . . . . . . . . . . 11 (((t*rec‘𝑅) ∈ V ∧ ∀𝑧(𝑧 = (t*rec‘𝑅) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
3929, 37, 38sylancr 587 . . . . . . . . . 10 (𝜑 → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
4039adantr 480 . . . . . . . . 9 ((𝜑𝑅 ∈ V) → ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*rec‘𝑅) ∧ 𝑅 ⊆ (t*rec‘𝑅) ∧ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅))))
4125, 26, 28, 40mpbir3and 1343 . . . . . . . 8 ((𝜑𝑅 ∈ V) → (t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
4241ne0d 4308 . . . . . . 7 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅)
43 intex 5302 . . . . . . 7 ({𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ≠ ∅ ↔ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
4442, 43sylib 218 . . . . . 6 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
451, 12, 13, 44fvmptd 6978 . . . . 5 ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
46 intss1 4930 . . . . . . 7 ((t*rec‘𝑅) ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
4741, 46syl 17 . . . . . 6 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ (t*rec‘𝑅))
48 vex 3454 . . . . . . . . . . 11 𝑠 ∈ V
49 sseq2 3976 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
50 sseq2 3976 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (𝑅𝑧𝑅𝑠))
51 id 22 . . . . . . . . . . . . . 14 (𝑧 = 𝑠𝑧 = 𝑠)
5251, 51coeq12d 5831 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
5352, 51sseq12d 3983 . . . . . . . . . . . 12 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
5449, 50, 533anbi123d 1438 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
5548, 54elab 3649 . . . . . . . . . 10 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
5614rtrclreclem4 15034 . . . . . . . . . . 11 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
575619.21bi 2190 . . . . . . . . . 10 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
5855, 57biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (t*rec‘𝑅) ⊆ 𝑠))
5958ralrimiv 3125 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
60 ssint 4931 . . . . . . . 8 ((t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} (t*rec‘𝑅) ⊆ 𝑠)
6159, 60sylibr 234 . . . . . . 7 (𝜑 → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6261adantr 480 . . . . . 6 ((𝜑𝑅 ∈ V) → (t*rec‘𝑅) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6347, 62eqssd 3967 . . . . 5 ((𝜑𝑅 ∈ V) → {𝑧 ∣ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑧𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (t*rec‘𝑅))
6445, 63eqtrd 2765 . . . 4 ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))
65 df-rtrcl 14961 . . . . 5 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
66 fveq1 6860 . . . . . . 7 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (t*‘𝑅) = ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅))
6766eqeq1d 2732 . . . . . 6 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → ((t*‘𝑅) = (t*rec‘𝑅) ↔ ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
6867imbi2d 340 . . . . 5 (t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) → (((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅)) ↔ ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅))))
6965, 68ax-mp 5 . . . 4 (((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅)) ↔ ((𝜑𝑅 ∈ V) → ((𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})‘𝑅) = (t*rec‘𝑅)))
7064, 69mpbir 231 . . 3 ((𝜑𝑅 ∈ V) → (t*‘𝑅) = (t*rec‘𝑅))
7170ex 412 . 2 (𝜑 → (𝑅 ∈ V → (t*‘𝑅) = (t*rec‘𝑅)))
72 fvprc 6853 . . 3 𝑅 ∈ V → (t*‘𝑅) = ∅)
73 fvprc 6853 . . . 4 𝑅 ∈ V → (t*rec‘𝑅) = ∅)
7473eqcomd 2736 . . 3 𝑅 ∈ V → ∅ = (t*rec‘𝑅))
7572, 74eqtrd 2765 . 2 𝑅 ∈ V → (t*‘𝑅) = (t*rec‘𝑅))
7671, 75pm2.61d1 180 1 (𝜑 → (t*‘𝑅) = (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  Vcvv 3450  cun 3915  wss 3917  c0 4299   cuni 4874   cint 4913  cmpt 5191   I cid 5535  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  Rel wrel 5646  cfv 6514  t*crtcl 14959  t*reccrtrcl 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-rtrcl 14961  df-relexp 14993  df-rtrclrec 15029
This theorem is referenced by:  rtrclind  15038
  Copyright terms: Public domain W3C validator