MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrcl2 Structured version   Visualization version   GIF version

Theorem dfrtrcl2 14881
Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrcl2.1 (πœ‘ β†’ Rel 𝑅)
Assertion
Ref Expression
dfrtrcl2 (πœ‘ β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…))

Proof of Theorem dfrtrcl2
Dummy variables π‘₯ 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ V) β†’ (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)}) = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)}))
2 dmeq 5856 . . . . . . . . . . . . 13 (π‘₯ = 𝑅 β†’ dom π‘₯ = dom 𝑅)
3 rneq 5888 . . . . . . . . . . . . 13 (π‘₯ = 𝑅 β†’ ran π‘₯ = ran 𝑅)
42, 3uneq12d 4123 . . . . . . . . . . . 12 (π‘₯ = 𝑅 β†’ (dom π‘₯ βˆͺ ran π‘₯) = (dom 𝑅 βˆͺ ran 𝑅))
54reseq2d 5934 . . . . . . . . . . 11 (π‘₯ = 𝑅 β†’ ( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) = ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)))
65sseq1d 3974 . . . . . . . . . 10 (π‘₯ = 𝑅 β†’ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ↔ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧))
7 id 22 . . . . . . . . . . 11 (π‘₯ = 𝑅 β†’ π‘₯ = 𝑅)
87sseq1d 3974 . . . . . . . . . 10 (π‘₯ = 𝑅 β†’ (π‘₯ βŠ† 𝑧 ↔ 𝑅 βŠ† 𝑧))
96, 83anbi12d 1438 . . . . . . . . 9 (π‘₯ = 𝑅 β†’ ((( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)))
109abbidv 2807 . . . . . . . 8 (π‘₯ = 𝑅 β†’ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} = {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
1110inteqd 4911 . . . . . . 7 (π‘₯ = 𝑅 β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} = ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
1211adantl 483 . . . . . 6 (((πœ‘ ∧ 𝑅 ∈ V) ∧ π‘₯ = 𝑅) β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} = ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
13 simpr 486 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ V) β†’ 𝑅 ∈ V)
14 dfrtrcl2.1 . . . . . . . . . . . . 13 (πœ‘ β†’ Rel 𝑅)
15 relfld 6224 . . . . . . . . . . . . 13 (Rel 𝑅 β†’ βˆͺ βˆͺ 𝑅 = (dom 𝑅 βˆͺ ran 𝑅))
1614, 15syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ βˆͺ βˆͺ 𝑅 = (dom 𝑅 βˆͺ ran 𝑅))
1716eqcomd 2744 . . . . . . . . . . 11 (πœ‘ β†’ (dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅)
1817adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ 𝑅 ∈ V) β†’ (dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅)
1914adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑅 ∈ V) β†’ Rel 𝑅)
2019, 13rtrclreclem2 14878 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ( I β†Ύ βˆͺ βˆͺ 𝑅) βŠ† (t*recβ€˜π‘…))
21 id 22 . . . . . . . . . . . . 13 ((dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅 β†’ (dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅)
2221reseq2d 5934 . . . . . . . . . . . 12 ((dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅 β†’ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) = ( I β†Ύ βˆͺ βˆͺ 𝑅))
2322sseq1d 3974 . . . . . . . . . . 11 ((dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅 β†’ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ↔ ( I β†Ύ βˆͺ βˆͺ 𝑅) βŠ† (t*recβ€˜π‘…)))
2420, 23syl5ibr 246 . . . . . . . . . 10 ((dom 𝑅 βˆͺ ran 𝑅) = βˆͺ βˆͺ 𝑅 β†’ ((πœ‘ ∧ 𝑅 ∈ V) β†’ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…)))
2518, 24mpcom 38 . . . . . . . . 9 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…))
2613rtrclreclem1 14876 . . . . . . . . 9 ((πœ‘ ∧ 𝑅 ∈ V) β†’ 𝑅 βŠ† (t*recβ€˜π‘…))
2714rtrclreclem3 14879 . . . . . . . . . 10 (πœ‘ β†’ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))
2827adantr 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))
29 fvex 6851 . . . . . . . . . . 11 (t*recβ€˜π‘…) ∈ V
30 sseq2 3969 . . . . . . . . . . . . . 14 (𝑧 = (t*recβ€˜π‘…) β†’ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ↔ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…)))
31 sseq2 3969 . . . . . . . . . . . . . 14 (𝑧 = (t*recβ€˜π‘…) β†’ (𝑅 βŠ† 𝑧 ↔ 𝑅 βŠ† (t*recβ€˜π‘…)))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (t*recβ€˜π‘…) β†’ 𝑧 = (t*recβ€˜π‘…))
3332, 32coeq12d 5817 . . . . . . . . . . . . . . 15 (𝑧 = (t*recβ€˜π‘…) β†’ (𝑧 ∘ 𝑧) = ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)))
3433, 32sseq12d 3976 . . . . . . . . . . . . . 14 (𝑧 = (t*recβ€˜π‘…) β†’ ((𝑧 ∘ 𝑧) βŠ† 𝑧 ↔ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…)))
3530, 31, 343anbi123d 1437 . . . . . . . . . . . . 13 (𝑧 = (t*recβ€˜π‘…) β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))))
3635a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑧 = (t*recβ€˜π‘…) β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…)))))
3736alrimiv 1931 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘§(𝑧 = (t*recβ€˜π‘…) β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…)))))
38 elabgt 3623 . . . . . . . . . . 11 (((t*recβ€˜π‘…) ∈ V ∧ βˆ€π‘§(𝑧 = (t*recβ€˜π‘…) β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))))) β†’ ((t*recβ€˜π‘…) ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))))
3929, 37, 38sylancr 588 . . . . . . . . . 10 (πœ‘ β†’ ((t*recβ€˜π‘…) ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))))
4039adantr 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((t*recβ€˜π‘…) ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† (t*recβ€˜π‘…) ∧ 𝑅 βŠ† (t*recβ€˜π‘…) ∧ ((t*recβ€˜π‘…) ∘ (t*recβ€˜π‘…)) βŠ† (t*recβ€˜π‘…))))
4125, 26, 28, 40mpbir3and 1343 . . . . . . . 8 ((πœ‘ ∧ 𝑅 ∈ V) β†’ (t*recβ€˜π‘…) ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
4241ne0d 4294 . . . . . . 7 ((πœ‘ ∧ 𝑅 ∈ V) β†’ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} β‰  βˆ…)
43 intex 5293 . . . . . . 7 ({𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} β‰  βˆ… ↔ ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ∈ V)
4442, 43sylib 217 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ∈ V)
451, 12, 13, 44fvmptd 6951 . . . . 5 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…) = ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
46 intss1 4923 . . . . . . 7 ((t*recβ€˜π‘…) ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} βŠ† (t*recβ€˜π‘…))
4741, 46syl 17 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} βŠ† (t*recβ€˜π‘…))
48 vex 3448 . . . . . . . . . . 11 𝑠 ∈ V
49 sseq2 3969 . . . . . . . . . . . 12 (𝑧 = 𝑠 β†’ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ↔ ( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑠))
50 sseq2 3969 . . . . . . . . . . . 12 (𝑧 = 𝑠 β†’ (𝑅 βŠ† 𝑧 ↔ 𝑅 βŠ† 𝑠))
51 id 22 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 β†’ 𝑧 = 𝑠)
5251, 51coeq12d 5817 . . . . . . . . . . . . 13 (𝑧 = 𝑠 β†’ (𝑧 ∘ 𝑧) = (𝑠 ∘ 𝑠))
5352, 51sseq12d 3976 . . . . . . . . . . . 12 (𝑧 = 𝑠 β†’ ((𝑧 ∘ 𝑧) βŠ† 𝑧 ↔ (𝑠 ∘ 𝑠) βŠ† 𝑠))
5449, 50, 533anbi123d 1437 . . . . . . . . . . 11 (𝑧 = 𝑠 β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧) ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑠 ∧ 𝑅 βŠ† 𝑠 ∧ (𝑠 ∘ 𝑠) βŠ† 𝑠)))
5548, 54elab 3629 . . . . . . . . . 10 (𝑠 ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ↔ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑠 ∧ 𝑅 βŠ† 𝑠 ∧ (𝑠 ∘ 𝑠) βŠ† 𝑠))
5614rtrclreclem4 14880 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑠 ∧ 𝑅 βŠ† 𝑠 ∧ (𝑠 ∘ 𝑠) βŠ† 𝑠) β†’ (t*recβ€˜π‘…) βŠ† 𝑠))
575619.21bi 2183 . . . . . . . . . 10 (πœ‘ β†’ ((( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑠 ∧ 𝑅 βŠ† 𝑠 ∧ (𝑠 ∘ 𝑠) βŠ† 𝑠) β†’ (t*recβ€˜π‘…) βŠ† 𝑠))
5855, 57biimtrid 241 . . . . . . . . 9 (πœ‘ β†’ (𝑠 ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} β†’ (t*recβ€˜π‘…) βŠ† 𝑠))
5958ralrimiv 3141 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘  ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} (t*recβ€˜π‘…) βŠ† 𝑠)
60 ssint 4924 . . . . . . . 8 ((t*recβ€˜π‘…) βŠ† ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} ↔ βˆ€π‘  ∈ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} (t*recβ€˜π‘…) βŠ† 𝑠)
6159, 60sylibr 233 . . . . . . 7 (πœ‘ β†’ (t*recβ€˜π‘…) βŠ† ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
6261adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑅 ∈ V) β†’ (t*recβ€˜π‘…) βŠ† ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
6347, 62eqssd 3960 . . . . 5 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ∩ {𝑧 ∣ (( I β†Ύ (dom 𝑅 βˆͺ ran 𝑅)) βŠ† 𝑧 ∧ 𝑅 βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)} = (t*recβ€˜π‘…))
6445, 63eqtrd 2778 . . . 4 ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…) = (t*recβ€˜π‘…))
65 df-rtrcl 14807 . . . . 5 t* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
66 fveq1 6837 . . . . . . 7 (t* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)}) β†’ (t*β€˜π‘…) = ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…))
6766eqeq1d 2740 . . . . . 6 (t* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)}) β†’ ((t*β€˜π‘…) = (t*recβ€˜π‘…) ↔ ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…) = (t*recβ€˜π‘…)))
6867imbi2d 341 . . . . 5 (t* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)}) β†’ (((πœ‘ ∧ 𝑅 ∈ V) β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…)) ↔ ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…) = (t*recβ€˜π‘…))))
6965, 68ax-mp 5 . . . 4 (((πœ‘ ∧ 𝑅 ∈ V) β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…)) ↔ ((πœ‘ ∧ 𝑅 ∈ V) β†’ ((π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})β€˜π‘…) = (t*recβ€˜π‘…)))
7064, 69mpbir 230 . . 3 ((πœ‘ ∧ 𝑅 ∈ V) β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…))
7170ex 414 . 2 (πœ‘ β†’ (𝑅 ∈ V β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…)))
72 fvprc 6830 . . 3 (Β¬ 𝑅 ∈ V β†’ (t*β€˜π‘…) = βˆ…)
73 fvprc 6830 . . . 4 (Β¬ 𝑅 ∈ V β†’ (t*recβ€˜π‘…) = βˆ…)
7473eqcomd 2744 . . 3 (Β¬ 𝑅 ∈ V β†’ βˆ… = (t*recβ€˜π‘…))
7572, 74eqtrd 2778 . 2 (Β¬ 𝑅 ∈ V β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…))
7671, 75pm2.61d1 180 1 (πœ‘ β†’ (t*β€˜π‘…) = (t*recβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088  βˆ€wal 1540   = wceq 1542   ∈ wcel 2107  {cab 2715   β‰  wne 2942  βˆ€wral 3063  Vcvv 3444   βˆͺ cun 3907   βŠ† wss 3909  βˆ…c0 4281  βˆͺ cuni 4864  βˆ© cint 4906   ↦ cmpt 5187   I cid 5528  dom cdm 5631  ran crn 5632   β†Ύ cres 5633   ∘ ccom 5635  Rel wrel 5636  β€˜cfv 6492  t*crtcl 14805  t*reccrtrcl 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-n0 12348  df-z 12434  df-uz 12697  df-seq 13836  df-rtrcl 14807  df-relexp 14839  df-rtrclrec 14875
This theorem is referenced by:  rtrclind  14884
  Copyright terms: Public domain W3C validator