| Step | Hyp | Ref
| Expression |
| 1 | | df-rtrcl 15027 |
. 2
⊢ t* =
(𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 2 | | ancom 460 |
. . . . . . 7
⊢ ((( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦) ↔ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) |
| 3 | 2 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)) ↔ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))) |
| 4 | 3 | abbii 2809 |
. . . . 5
⊢ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} |
| 5 | 4 | inteqi 4950 |
. . . 4
⊢ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))} = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} |
| 6 | 5 | mpteq2i 5247 |
. . 3
⊢ (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
| 7 | | vex 3484 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 8 | 7 | rtrclexi 43634 |
. . . . 5
⊢ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V |
| 9 | 8 | a1i 11 |
. . . 4
⊢ (𝑥 ∈ V → ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) |
| 10 | | dmexg 7923 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → dom 𝑥 ∈ V) |
| 11 | | rnexg 7924 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → ran 𝑥 ∈ V) |
| 12 | 10, 11 | unexd 7774 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (dom 𝑥 ∪ ran 𝑥) ∈ V) |
| 13 | | resiexg 7934 |
. . . . . . . 8
⊢ ((dom
𝑥 ∪ ran 𝑥) ∈ V → ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∈ V) |
| 14 | 7, 12, 13 | mp2b 10 |
. . . . . . 7
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∈
V |
| 15 | 7, 14 | unex 7764 |
. . . . . 6
⊢ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V |
| 16 | 15 | trclexi 43633 |
. . . . 5
⊢ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∈ V |
| 17 | 16 | a1i 11 |
. . . 4
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∈ V) |
| 18 | | simpr 484 |
. . . . . 6
⊢ (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → (𝑧 ∘ 𝑧) ⊆ 𝑧) |
| 19 | 18 | cotrintab 43627 |
. . . . 5
⊢ (∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∘ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 20 | 19 | a1i 11 |
. . . 4
⊢ (𝑥 ∈ V → (∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∘ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 21 | 7 | dmex 7931 |
. . . . . . . . . . . . 13
⊢ dom 𝑥 ∈ V |
| 22 | 7 | rnex 7932 |
. . . . . . . . . . . . 13
⊢ ran 𝑥 ∈ V |
| 23 | | unexg 7763 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑥 ∈ V ∧ ran 𝑥 ∈ V) → (dom 𝑥 ∪ ran 𝑥) ∈ V) |
| 24 | 23 | resiexd 7236 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∈ V ∧ ran 𝑥 ∈ V) → ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∈ V) |
| 25 | 21, 22, 24 | mp2an 692 |
. . . . . . . . . . . 12
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∈
V |
| 26 | 7, 25 | unex 7764 |
. . . . . . . . . . 11
⊢ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V |
| 27 | | dmtrcl 43640 |
. . . . . . . . . . 11
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → dom ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . . 10
⊢ dom ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 29 | | dmun 5921 |
. . . . . . . . . . 11
⊢ dom
(𝑥 ∪ ( I ↾ (dom
𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 30 | | dmresi 6070 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 31 | 30 | uneq2i 4165 |
. . . . . . . . . . 11
⊢ (dom
𝑥 ∪ dom ( I ↾
(dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) |
| 32 | | ssun1 4178 |
. . . . . . . . . . . 12
⊢ dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) |
| 33 | | ssequn1 4186 |
. . . . . . . . . . . 12
⊢ (dom
𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)) |
| 34 | 32, 33 | mpbi 230 |
. . . . . . . . . . 11
⊢ (dom
𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 35 | 29, 31, 34 | 3eqtri 2769 |
. . . . . . . . . 10
⊢ dom
(𝑥 ∪ ( I ↾ (dom
𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥) |
| 36 | 28, 35 | eqtri 2765 |
. . . . . . . . 9
⊢ dom ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥) |
| 37 | | rntrcl 43641 |
. . . . . . . . . . 11
⊢ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → ran ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))) |
| 38 | 26, 37 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 39 | | rnun 6165 |
. . . . . . . . . . 11
⊢ ran
(𝑥 ∪ ( I ↾ (dom
𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 40 | | rnresi 6093 |
. . . . . . . . . . . 12
⊢ ran ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 41 | 40 | uneq2i 4165 |
. . . . . . . . . . 11
⊢ (ran
𝑥 ∪ ran ( I ↾
(dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) |
| 42 | | ssun2 4179 |
. . . . . . . . . . . 12
⊢ ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) |
| 43 | | ssequn1 4186 |
. . . . . . . . . . . 12
⊢ (ran
𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)) |
| 44 | 42, 43 | mpbi 230 |
. . . . . . . . . . 11
⊢ (ran
𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 45 | 39, 41, 44 | 3eqtri 2769 |
. . . . . . . . . 10
⊢ ran
(𝑥 ∪ ( I ↾ (dom
𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥) |
| 46 | 38, 45 | eqtri 2765 |
. . . . . . . . 9
⊢ ran ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥) |
| 47 | 36, 46 | uneq12i 4166 |
. . . . . . . 8
⊢ (dom
∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) |
| 48 | | unidm 4157 |
. . . . . . . 8
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 49 | 47, 48 | eqtri 2765 |
. . . . . . 7
⊢ (dom
∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = (dom 𝑥 ∪ ran 𝑥) |
| 50 | 49 | reseq2i 5994 |
. . . . . 6
⊢ ( I
↾ (dom ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
| 51 | | ssun2 4179 |
. . . . . . 7
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 52 | | ssmin 4967 |
. . . . . . 7
⊢ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 53 | 51, 52 | sstri 3993 |
. . . . . 6
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 54 | 50, 53 | eqsstri 4030 |
. . . . 5
⊢ ( I
↾ (dom ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 55 | 54 | a1i 11 |
. . . 4
⊢ (𝑥 ∈ V → ( I ↾
(dom ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 56 | | simprl 771 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑦 ∘ 𝑦) ⊆ 𝑦) |
| 57 | 56 | cotrintab 43627 |
. . . . 5
⊢ (∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} |
| 58 | 57 | a1i 11 |
. . . 4
⊢ (𝑥 ∈ V → (∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
| 59 | | id 22 |
. . . . . 6
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → 𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 60 | 59, 59 | coeq12d 5875 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → (𝑦 ∘ 𝑦) = (∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∘ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) |
| 61 | 60, 59 | sseq12d 4017 |
. . . 4
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ((𝑦 ∘ 𝑦) ⊆ 𝑦 ↔ (∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∘ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) |
| 62 | | dmeq 5914 |
. . . . . . 7
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → dom 𝑦 = dom ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 63 | | rneq 5947 |
. . . . . . 7
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ran 𝑦 = ran ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 64 | 62, 63 | uneq12d 4169 |
. . . . . 6
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → (dom 𝑦 ∪ ran 𝑦) = (dom ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) |
| 65 | 64 | reseq2d 5997 |
. . . . 5
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}))) |
| 66 | 65, 59 | sseq12d 4017 |
. . . 4
⊢ (𝑦 = ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ∪ ran ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) ⊆ ∩
{𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)})) |
| 67 | | id 22 |
. . . . . 6
⊢ (𝑧 = ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → 𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) |
| 68 | 67, 67 | coeq12d 5875 |
. . . . 5
⊢ (𝑧 = ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝑧 ∘ 𝑧) = (∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})) |
| 69 | 68, 67 | sseq12d 4017 |
. . . 4
⊢ (𝑧 = ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ ∩
{𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})) |
| 70 | 9, 17, 20, 55, 58, 61, 66, 69 | mptrcllem 43626 |
. . 3
⊢ (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ ((𝑦 ∘ 𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 71 | | df-3an 1089 |
. . . . . . 7
⊢ ((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧) ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)) |
| 72 | | ancom 460 |
. . . . . . . . 9
⊢ ((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧) ↔ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧)) |
| 73 | | unss 4190 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧) |
| 74 | 72, 73 | bitri 275 |
. . . . . . . 8
⊢ ((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧) |
| 75 | 74 | anbi1i 624 |
. . . . . . 7
⊢ (((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧) ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)) |
| 76 | 71, 75 | bitr2i 276 |
. . . . . 6
⊢ (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)) |
| 77 | 76 | abbii 2809 |
. . . . 5
⊢ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 78 | 77 | inteqi 4950 |
. . . 4
⊢ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 79 | 78 | mpteq2i 5247 |
. . 3
⊢ (𝑥 ∈ V ↦ ∩ {𝑧
∣ ((𝑥 ∪ ( I
↾ (dom 𝑥 ∪ ran
𝑥))) ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 80 | 6, 70, 79 | 3eqtri 2769 |
. 2
⊢ (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 81 | 1, 80 | eqtr4i 2768 |
1
⊢ t* =
(𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) |