Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl5 Structured version   Visualization version   GIF version

Theorem dfrtrcl5 43618
Description: Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
dfrtrcl5 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfrtrcl5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 14954 . 2 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 ancom 460 . . . . . . 7 ((( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦) ↔ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
32anbi2i 623 . . . . . 6 ((𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)) ↔ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)))
43abbii 2796 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
54inteqi 4914 . . . 4 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
65mpteq2i 5203 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
7 vex 3451 . . . . . 6 𝑥 ∈ V
87rtrclexi 43610 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V
98a1i 11 . . . 4 (𝑥 ∈ V → {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V)
10 dmexg 7877 . . . . . . . . 9 (𝑥 ∈ V → dom 𝑥 ∈ V)
11 rnexg 7878 . . . . . . . . 9 (𝑥 ∈ V → ran 𝑥 ∈ V)
1210, 11unexd 7730 . . . . . . . 8 (𝑥 ∈ V → (dom 𝑥 ∪ ran 𝑥) ∈ V)
13 resiexg 7888 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∈ V → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
147, 12, 13mp2b 10 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
157, 14unex 7720 . . . . . 6 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
1615trclexi 43609 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V
1716a1i 11 . . . 4 (𝑥 ∈ V → {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
18 simpr 484 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → (𝑧𝑧) ⊆ 𝑧)
1918cotrintab 43603 . . . . 5 ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
2019a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
217dmex 7885 . . . . . . . . . . . . 13 dom 𝑥 ∈ V
227rnex 7886 . . . . . . . . . . . . 13 ran 𝑥 ∈ V
23 unexg 7719 . . . . . . . . . . . . . 14 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → (dom 𝑥 ∪ ran 𝑥) ∈ V)
2423resiexd 7190 . . . . . . . . . . . . 13 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
2521, 22, 24mp2an 692 . . . . . . . . . . . 12 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
267, 25unex 7720 . . . . . . . . . . 11 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
27 dmtrcl 43616 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
2826, 27ax-mp 5 . . . . . . . . . 10 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
29 dmun 5874 . . . . . . . . . . 11 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
30 dmresi 6023 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3130uneq2i 4128 . . . . . . . . . . 11 (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
32 ssun1 4141 . . . . . . . . . . . 12 dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
33 ssequn1 4149 . . . . . . . . . . . 12 (dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
3432, 33mpbi 230 . . . . . . . . . . 11 (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3529, 31, 343eqtri 2756 . . . . . . . . . 10 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
3628, 35eqtri 2752 . . . . . . . . 9 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
37 rntrcl 43617 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
3826, 37ax-mp 5 . . . . . . . . . 10 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
39 rnun 6118 . . . . . . . . . . 11 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
40 rnresi 6046 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4140uneq2i 4128 . . . . . . . . . . 11 (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
42 ssun2 4142 . . . . . . . . . . . 12 ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
43 ssequn1 4149 . . . . . . . . . . . 12 (ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
4442, 43mpbi 230 . . . . . . . . . . 11 (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4539, 41, 443eqtri 2756 . . . . . . . . . 10 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
4638, 45eqtri 2752 . . . . . . . . 9 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
4736, 46uneq12i 4129 . . . . . . . 8 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥))
48 unidm 4120 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4947, 48eqtri 2752 . . . . . . 7 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (dom 𝑥 ∪ ran 𝑥)
5049reseq2i 5947 . . . . . 6 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
51 ssun2 4142 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
52 ssmin 4931 . . . . . . 7 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5351, 52sstri 3956 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5450, 53eqsstri 3993 . . . . 5 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5554a1i 11 . . . 4 (𝑥 ∈ V → ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
56 simprl 770 . . . . . 6 ((𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑦𝑦) ⊆ 𝑦)
5756cotrintab 43603 . . . . 5 ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
5857a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
59 id 22 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → 𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6059, 59coeq12d 5828 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (𝑦𝑦) = ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6160, 59sseq12d 3980 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑦𝑦) ⊆ 𝑦 ↔ ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
62 dmeq 5867 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → dom 𝑦 = dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
63 rneq 5900 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ran 𝑦 = ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6462, 63uneq12d 4132 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (dom 𝑦 ∪ ran 𝑦) = (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6564reseq2d 5950 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})))
6665, 59sseq12d 3980 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
67 id 22 . . . . . 6 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → 𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
6867, 67coeq12d 5828 . . . . 5 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝑧𝑧) = ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
6968, 67sseq12d 3980 . . . 4 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → ((𝑧𝑧) ⊆ 𝑧 ↔ ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
709, 17, 20, 55, 58, 61, 66, 69mptrcllem 43602 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
71 df-3an 1088 . . . . . . 7 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧))
72 ancom 460 . . . . . . . . 9 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧))
73 unss 4153 . . . . . . . . 9 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7472, 73bitri 275 . . . . . . . 8 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7574anbi1i 624 . . . . . . 7 (((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7671, 75bitr2i 276 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7776abbii 2796 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7877inteqi 4914 . . . 4 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7978mpteq2i 5203 . . 3 (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
806, 70, 793eqtri 2756 . 2 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
811, 80eqtr4i 2755 1 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  cun 3912  wss 3914   cint 4910  cmpt 5188   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  t*crtcl 14952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-rtrcl 14954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator