Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl5 Structured version   Visualization version   GIF version

Theorem dfrtrcl5 40329
Description: Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
dfrtrcl5 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfrtrcl5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 14339 . 2 t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 ancom 464 . . . . . . 7 ((( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦) ↔ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
32anbi2i 625 . . . . . 6 ((𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)) ↔ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)))
43abbii 2863 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
54inteqi 4842 . . . 4 {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))} = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
65mpteq2i 5122 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
7 vex 3444 . . . . . 6 𝑥 ∈ V
87rtrclexi 40321 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V
98a1i 11 . . . 4 (𝑥 ∈ V → {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V)
10 dmexg 7594 . . . . . . . . 9 (𝑥 ∈ V → dom 𝑥 ∈ V)
11 rnexg 7595 . . . . . . . . 9 (𝑥 ∈ V → ran 𝑥 ∈ V)
12 unexg 7452 . . . . . . . . 9 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → (dom 𝑥 ∪ ran 𝑥) ∈ V)
1310, 11, 12syl2anc 587 . . . . . . . 8 (𝑥 ∈ V → (dom 𝑥 ∪ ran 𝑥) ∈ V)
14 resiexg 7601 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∈ V → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
157, 13, 14mp2b 10 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
167, 15unex 7449 . . . . . 6 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
1716trclexi 40320 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V
1817a1i 11 . . . 4 (𝑥 ∈ V → {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∈ V)
19 simpr 488 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → (𝑧𝑧) ⊆ 𝑧)
2019cotrintab 40314 . . . . 5 ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
2120a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
227dmex 7598 . . . . . . . . . . . . 13 dom 𝑥 ∈ V
237rnex 7599 . . . . . . . . . . . . 13 ran 𝑥 ∈ V
2412resiexd 6956 . . . . . . . . . . . . 13 ((dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
2522, 23, 24mp2an 691 . . . . . . . . . . . 12 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
267, 25unex 7449 . . . . . . . . . . 11 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V
27 dmtrcl 40327 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
2826, 27ax-mp 5 . . . . . . . . . 10 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
29 dmun 5743 . . . . . . . . . . 11 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
30 dmresi 5888 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3130uneq2i 4087 . . . . . . . . . . 11 (dom 𝑥 ∪ dom ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
32 ssun1 4099 . . . . . . . . . . . 12 dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
33 ssequn1 4107 . . . . . . . . . . . 12 (dom 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
3432, 33mpbi 233 . . . . . . . . . . 11 (dom 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3529, 31, 343eqtri 2825 . . . . . . . . . 10 dom (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
3628, 35eqtri 2821 . . . . . . . . 9 dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
37 rntrcl 40328 . . . . . . . . . . 11 ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ∈ V → ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))))
3826, 37ax-mp 5 . . . . . . . . . 10 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
39 rnun 5971 . . . . . . . . . . 11 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
40 rnresi 5910 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4140uneq2i 4087 . . . . . . . . . . 11 (ran 𝑥 ∪ ran ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥))
42 ssun2 4100 . . . . . . . . . . . 12 ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥)
43 ssequn1 4107 . . . . . . . . . . . 12 (ran 𝑥 ⊆ (dom 𝑥 ∪ ran 𝑥) ↔ (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥))
4442, 43mpbi 233 . . . . . . . . . . 11 (ran 𝑥 ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4539, 41, 443eqtri 2825 . . . . . . . . . 10 ran (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) = (dom 𝑥 ∪ ran 𝑥)
4638, 45eqtri 2821 . . . . . . . . 9 ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = (dom 𝑥 ∪ ran 𝑥)
4736, 46uneq12i 4088 . . . . . . . 8 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥))
48 unidm 4079 . . . . . . . 8 ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
4947, 48eqtri 2821 . . . . . . 7 (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (dom 𝑥 ∪ ran 𝑥)
5049reseq2i 5815 . . . . . 6 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
51 ssun2 4100 . . . . . . 7 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
52 ssmin 4857 . . . . . . 7 (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5351, 52sstri 3924 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5450, 53eqsstri 3949 . . . . 5 ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
5554a1i 11 . . . 4 (𝑥 ∈ V → ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
56 simprl 770 . . . . . 6 ((𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) → (𝑦𝑦) ⊆ 𝑦)
5756cotrintab 40314 . . . . 5 ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}
5857a1i 11 . . . 4 (𝑥 ∈ V → ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
59 id 22 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → 𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6059, 59coeq12d 5699 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (𝑦𝑦) = ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6160, 59sseq12d 3948 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑦𝑦) ⊆ 𝑦 ↔ ( {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∘ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
62 dmeq 5736 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → dom 𝑦 = dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
63 rneq 5770 . . . . . . 7 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ran 𝑦 = ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
6462, 63uneq12d 4091 . . . . . 6 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (dom 𝑦 ∪ ran 𝑦) = (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
6564reseq2d 5818 . . . . 5 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})))
6665, 59sseq12d 3948 . . . 4 (𝑦 = {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ∪ ran {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})) ⊆ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}))
67 id 22 . . . . . 6 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → 𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))})
6867, 67coeq12d 5699 . . . . 5 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝑧𝑧) = ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
6968, 67sseq12d 3948 . . . 4 (𝑧 = {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → ((𝑧𝑧) ⊆ 𝑧 ↔ ( {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∘ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) ⊆ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}))
709, 18, 21, 55, 58, 61, 66, 69mptrcllem 40313 . . 3 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ((𝑦𝑦) ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
71 df-3an 1086 . . . . . . 7 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧))
72 ancom 464 . . . . . . . . 9 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧))
73 unss 4111 . . . . . . . . 9 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7472, 73bitri 278 . . . . . . . 8 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ↔ (𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧)
7574anbi1i 626 . . . . . . 7 (((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧) ∧ (𝑧𝑧) ⊆ 𝑧) ↔ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7671, 75bitr2i 279 . . . . . 6 (((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧))
7776abbii 2863 . . . . 5 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7877inteqi 4842 . . . 4 {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7978mpteq2i 5122 . . 3 (𝑥 ∈ V ↦ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
806, 70, 793eqtri 2825 . 2 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))}) = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
811, 80eqtr4i 2824 1 t* = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦𝑦) ⊆ 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  Vcvv 3441  cun 3879  wss 3881   cint 4838  cmpt 5110   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  t*crtcl 14337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-rtrcl 14339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator