Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl3 Structured version   Visualization version   GIF version

Theorem dfrtrcl3 42474
Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 15008. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl3 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrtrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 14934 . 2 t* = (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp0g 14968 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
3 nn0ex 12477 . . . . . . . . 9 0 ∈ V
4 0nn0 12486 . . . . . . . . 9 0 ∈ ℕ0
5 oveq1 7415 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 5026 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑡𝑟𝑛))
7 oveq2 7416 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 5043 . . . . . . . . . . . 12 𝑛 ∈ ℕ0 (𝑡𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘)
96, 8eqtrdi 2788 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
109cbvmptv 5261 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
1110ov2ssiunov2 42441 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1453 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 4021 . . . . . . 7 (𝑟 ∈ V → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
14 relexp1g 14972 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
15 1nn0 12487 . . . . . . . . 9 1 ∈ ℕ0
1610ov2ssiunov2 42441 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
173, 15, 16mp3an23 1453 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
1814, 17eqsstrrd 4021 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
19 nn0uz 12863 . . . . . . . 8 0 = (ℤ‘0)
2010iunrelexpuztr 42460 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ0 = (ℤ‘0) ∧ 0 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2119, 4, 20mp3an23 1453 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
22 fvex 6904 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V
23 sseq2 4008 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
24 sseq2 4008 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑟𝑧𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
25 id 22 . . . . . . . . . . . . 13 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2625, 25coeq12d 5864 . . . . . . . . . . . 12 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑧𝑧) = (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2726, 25sseq12d 4015 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((𝑧𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2823, 24, 273anbi123d 1436 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
2928a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
3029alrimiv 1930 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
31 elabgt 3662 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3222, 30, 31sylancr 587 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3313, 18, 21, 32mpbir3and 1342 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
34 intss1 4967 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
3533, 34syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
36 vex 3478 . . . . . . . . 9 𝑠 ∈ V
37 sseq2 4008 . . . . . . . . . 10 (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠))
38 sseq2 4008 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑟𝑧𝑟𝑠))
39 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑠𝑧 = 𝑠)
4039, 39coeq12d 5864 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
4140, 39sseq12d 4015 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
4237, 38, 413anbi123d 1436 . . . . . . . . 9 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
4336, 42elab 3668 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
44 eqid 2732 . . . . . . . . . 10 0 = ℕ0
4510iunrelexpmin2 42453 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4644, 45mpan2 689 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
474619.21bi 2182 . . . . . . . 8 (𝑟 ∈ V → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4843, 47biimtrid 241 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4948ralrimiv 3145 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
50 ssint 4968 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
5149, 50sylibr 233 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5235, 51eqssd 3999 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
53 oveq1 7415 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
5453iuneq2d 5026 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
55 eqid 2732 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))
56 ovex 7441 . . . . . 6 (𝑟𝑟𝑛) ∈ V
573, 56iunex 7954 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) ∈ V
5854, 55, 57fvmpt 6998 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
5952, 58eqtrd 2772 . . 3 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
6059mpteq2ia 5251 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
611, 60eqtri 2760 1 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wral 3061  Vcvv 3474  cun 3946  wss 3948   cint 4950   ciun 4997  cmpt 5231   I cid 5573  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110  0cn0 12471  cuz 12821  t*crtcl 14932  𝑟crelexp 14965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-seq 13966  df-rtrcl 14934  df-relexp 14966
This theorem is referenced by:  brfvrtrcld  42475  fvrtrcllb0d  42476  fvrtrcllb0da  42477  fvrtrcllb1d  42478  dfrtrcl4  42479  corcltrcl  42480  cotrclrcl  42483
  Copyright terms: Public domain W3C validator