| Step | Hyp | Ref
| Expression |
| 1 | | df-rtrcl 15012 |
. 2
⊢ t* =
(𝑟 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 2 | | relexp0g 15046 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟0) = (
I ↾ (dom 𝑟 ∪ ran
𝑟))) |
| 3 | | nn0ex 12512 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
| 4 | | 0nn0 12521 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 5 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → (𝑎↑𝑟𝑛) = (𝑡↑𝑟𝑛)) |
| 6 | 5 | iuneq2d 5003 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑡↑𝑟𝑛)) |
| 7 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑡↑𝑟𝑛) = (𝑡↑𝑟𝑘)) |
| 8 | 7 | cbviunv 5021 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ ℕ0 (𝑡↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ0 (𝑡↑𝑟𝑘) |
| 9 | 6, 8 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ0
(𝑡↑𝑟𝑘)) |
| 10 | 9 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) = (𝑡 ∈ V ↦ ∪ 𝑘 ∈ ℕ0 (𝑡↑𝑟𝑘)) |
| 11 | 10 | ov2ssiunov2 43691 |
. . . . . . . . 9
⊢ ((𝑟 ∈ V ∧
ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟↑𝑟0)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 12 | 3, 4, 11 | mp3an23 1455 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟0)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 13 | 2, 12 | eqsstrrd 3999 |
. . . . . . 7
⊢ (𝑟 ∈ V → ( I ↾
(dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 14 | | relexp1g 15050 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1) =
𝑟) |
| 15 | | 1nn0 12522 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 16 | 10 | ov2ssiunov2 43691 |
. . . . . . . . 9
⊢ ((𝑟 ∈ V ∧
ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟↑𝑟1)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 17 | 3, 15, 16 | mp3an23 1455 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 18 | 14, 17 | eqsstrrd 3999 |
. . . . . . 7
⊢ (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 19 | | nn0uz 12899 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
| 20 | 10 | iunrelexpuztr 43710 |
. . . . . . . 8
⊢ ((𝑟 ∈ V ∧
ℕ0 = (ℤ≥‘0) ∧ 0 ∈
ℕ0) → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 21 | 19, 4, 20 | mp3an23 1455 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 22 | | fvex 6894 |
. . . . . . . 8
⊢ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ V |
| 23 | | sseq2 3990 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
| 24 | | sseq2 3990 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (𝑟 ⊆ 𝑧 ↔ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
| 25 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 26 | 25, 25 | coeq12d 5849 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (𝑧 ∘ 𝑧) = (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
| 27 | 26, 25 | sseq12d 3997 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
| 28 | 23, 24, 27 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
| 29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) |
| 30 | 29 | alrimiv 1927 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) |
| 31 | | elabgt 3656 |
. . . . . . . 8
⊢ ((((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
| 32 | 22, 30, 31 | sylancr 587 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
| 33 | 13, 18, 21, 32 | mpbir3and 1343 |
. . . . . 6
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 34 | | intss1 4944 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 35 | 33, 34 | syl 17 |
. . . . 5
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 36 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
| 37 | | sseq2 3990 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠)) |
| 38 | | sseq2 3990 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (𝑟 ⊆ 𝑧 ↔ 𝑟 ⊆ 𝑠)) |
| 39 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑠 → 𝑧 = 𝑠) |
| 40 | 39, 39 | coeq12d 5849 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑠 → (𝑧 ∘ 𝑧) = (𝑠 ∘ 𝑠)) |
| 41 | 40, 39 | sseq12d 3997 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑠 ∘ 𝑠) ⊆ 𝑠)) |
| 42 | 37, 38, 41 | 3anbi123d 1438 |
. . . . . . . . 9
⊢ (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
| 43 | 36, 42 | elab 3663 |
. . . . . . . 8
⊢ (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) |
| 44 | | eqid 2736 |
. . . . . . . . . 10
⊢
ℕ0 = ℕ0 |
| 45 | 10 | iunrelexpmin2 43703 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ V ∧
ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 46 | 44, 45 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 47 | 46 | 19.21bi 2190 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ((( I ↾
(dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 48 | 43, 47 | biimtrid 242 |
. . . . . . 7
⊢ (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 49 | 48 | ralrimiv 3132 |
. . . . . 6
⊢ (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
| 50 | | ssint 4945 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
| 51 | 49, 50 | sylibr 234 |
. . . . 5
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 52 | 35, 51 | eqssd 3981 |
. . . 4
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
| 53 | | oveq1 7417 |
. . . . . 6
⊢ (𝑎 = 𝑟 → (𝑎↑𝑟𝑛) = (𝑟↑𝑟𝑛)) |
| 54 | 53 | iuneq2d 5003 |
. . . . 5
⊢ (𝑎 = 𝑟 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑟↑𝑟𝑛)) |
| 55 | | eqid 2736 |
. . . . 5
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) = (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) |
| 56 | | ovex 7443 |
. . . . . 6
⊢ (𝑟↑𝑟𝑛) ∈ V |
| 57 | 3, 56 | iunex 7972 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) ∈ V |
| 58 | 54, 55, 57 | fvmpt 6991 |
. . . 4
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) = ∪ 𝑛 ∈ ℕ0
(𝑟↑𝑟𝑛)) |
| 59 | 52, 58 | eqtrd 2771 |
. . 3
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∪
𝑛 ∈
ℕ0 (𝑟↑𝑟𝑛)) |
| 60 | 59 | mpteq2ia 5221 |
. 2
⊢ (𝑟 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
| 61 | 1, 60 | eqtri 2759 |
1
⊢ t* =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |