Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl3 Structured version   Visualization version   GIF version

Theorem dfrtrcl3 43724
Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 15086. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl3 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrtrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 15012 . 2 t* = (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp0g 15046 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
3 nn0ex 12512 . . . . . . . . 9 0 ∈ V
4 0nn0 12521 . . . . . . . . 9 0 ∈ ℕ0
5 oveq1 7417 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 5003 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑡𝑟𝑛))
7 oveq2 7418 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 5021 . . . . . . . . . . . 12 𝑛 ∈ ℕ0 (𝑡𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘)
96, 8eqtrdi 2787 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
109cbvmptv 5230 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
1110ov2ssiunov2 43691 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1455 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 3999 . . . . . . 7 (𝑟 ∈ V → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
14 relexp1g 15050 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
15 1nn0 12522 . . . . . . . . 9 1 ∈ ℕ0
1610ov2ssiunov2 43691 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
173, 15, 16mp3an23 1455 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
1814, 17eqsstrrd 3999 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
19 nn0uz 12899 . . . . . . . 8 0 = (ℤ‘0)
2010iunrelexpuztr 43710 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ0 = (ℤ‘0) ∧ 0 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2119, 4, 20mp3an23 1455 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
22 fvex 6894 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V
23 sseq2 3990 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
24 sseq2 3990 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑟𝑧𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
25 id 22 . . . . . . . . . . . . 13 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2625, 25coeq12d 5849 . . . . . . . . . . . 12 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑧𝑧) = (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2726, 25sseq12d 3997 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((𝑧𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2823, 24, 273anbi123d 1438 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
2928a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
3029alrimiv 1927 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
31 elabgt 3656 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3222, 30, 31sylancr 587 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3313, 18, 21, 32mpbir3and 1343 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
34 intss1 4944 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
3533, 34syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
36 vex 3468 . . . . . . . . 9 𝑠 ∈ V
37 sseq2 3990 . . . . . . . . . 10 (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠))
38 sseq2 3990 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑟𝑧𝑟𝑠))
39 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑠𝑧 = 𝑠)
4039, 39coeq12d 5849 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
4140, 39sseq12d 3997 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
4237, 38, 413anbi123d 1438 . . . . . . . . 9 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
4336, 42elab 3663 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
44 eqid 2736 . . . . . . . . . 10 0 = ℕ0
4510iunrelexpmin2 43703 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4644, 45mpan2 691 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
474619.21bi 2190 . . . . . . . 8 (𝑟 ∈ V → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4843, 47biimtrid 242 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4948ralrimiv 3132 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
50 ssint 4945 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
5149, 50sylibr 234 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5235, 51eqssd 3981 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
53 oveq1 7417 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
5453iuneq2d 5003 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
55 eqid 2736 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))
56 ovex 7443 . . . . . 6 (𝑟𝑟𝑛) ∈ V
573, 56iunex 7972 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) ∈ V
5854, 55, 57fvmpt 6991 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
5952, 58eqtrd 2771 . . 3 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
6059mpteq2ia 5221 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
611, 60eqtri 2759 1 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  cun 3929  wss 3931   cint 4927   ciun 4972  cmpt 5206   I cid 5552  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  0cn0 12506  cuz 12857  t*crtcl 15010  𝑟crelexp 15043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-rtrcl 15012  df-relexp 15044
This theorem is referenced by:  brfvrtrcld  43725  fvrtrcllb0d  43726  fvrtrcllb0da  43727  fvrtrcllb1d  43728  dfrtrcl4  43729  corcltrcl  43730  cotrclrcl  43733
  Copyright terms: Public domain W3C validator