Step | Hyp | Ref
| Expression |
1 | | df-rtrcl 14439 |
. 2
⊢ t* =
(𝑟 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
2 | | relexp0g 14473 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟0) = (
I ↾ (dom 𝑟 ∪ ran
𝑟))) |
3 | | nn0ex 11984 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
4 | | 0nn0 11993 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
5 | | oveq1 7179 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → (𝑎↑𝑟𝑛) = (𝑡↑𝑟𝑛)) |
6 | 5 | iuneq2d 4910 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑡↑𝑟𝑛)) |
7 | | oveq2 7180 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑡↑𝑟𝑛) = (𝑡↑𝑟𝑘)) |
8 | 7 | cbviunv 4926 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ ℕ0 (𝑡↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ0 (𝑡↑𝑟𝑘) |
9 | 6, 8 | eqtrdi 2789 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ0
(𝑡↑𝑟𝑘)) |
10 | 9 | cbvmptv 5133 |
. . . . . . . . . 10
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) = (𝑡 ∈ V ↦ ∪ 𝑘 ∈ ℕ0 (𝑡↑𝑟𝑘)) |
11 | 10 | ov2ssiunov2 40876 |
. . . . . . . . 9
⊢ ((𝑟 ∈ V ∧
ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟↑𝑟0)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
12 | 3, 4, 11 | mp3an23 1454 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟0)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
13 | 2, 12 | eqsstrrd 3916 |
. . . . . . 7
⊢ (𝑟 ∈ V → ( I ↾
(dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
14 | | relexp1g 14477 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1) =
𝑟) |
15 | | 1nn0 11994 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
16 | 10 | ov2ssiunov2 40876 |
. . . . . . . . 9
⊢ ((𝑟 ∈ V ∧
ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟↑𝑟1)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
17 | 3, 15, 16 | mp3an23 1454 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
18 | 14, 17 | eqsstrrd 3916 |
. . . . . . 7
⊢ (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
19 | | nn0uz 12364 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
20 | 10 | iunrelexpuztr 40895 |
. . . . . . . 8
⊢ ((𝑟 ∈ V ∧
ℕ0 = (ℤ≥‘0) ∧ 0 ∈
ℕ0) → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
21 | 19, 4, 20 | mp3an23 1454 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
22 | | fvex 6689 |
. . . . . . . 8
⊢ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ V |
23 | | sseq2 3903 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
24 | | sseq2 3903 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (𝑟 ⊆ 𝑧 ↔ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
25 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
26 | 25, 25 | coeq12d 5707 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → (𝑧 ∘ 𝑧) = (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
27 | 26, 25 | sseq12d 3910 |
. . . . . . . . . . 11
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))) |
28 | 23, 24, 27 | 3anbi123d 1437 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) |
30 | 29 | alrimiv 1934 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) |
31 | | elabgt 3567 |
. . . . . . . 8
⊢ ((((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
32 | 22, 30, 31 | sylancr 590 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)))) |
33 | 13, 18, 21, 32 | mpbir3and 1343 |
. . . . . 6
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
34 | | intss1 4851 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
35 | 33, 34 | syl 17 |
. . . . 5
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
36 | | vex 3402 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
37 | | sseq2 3903 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠)) |
38 | | sseq2 3903 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → (𝑟 ⊆ 𝑧 ↔ 𝑟 ⊆ 𝑠)) |
39 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑠 → 𝑧 = 𝑠) |
40 | 39, 39 | coeq12d 5707 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑠 → (𝑧 ∘ 𝑧) = (𝑠 ∘ 𝑠)) |
41 | 40, 39 | sseq12d 3910 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑠 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑠 ∘ 𝑠) ⊆ 𝑠)) |
42 | 37, 38, 41 | 3anbi123d 1437 |
. . . . . . . . 9
⊢ (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
43 | 36, 42 | elab 3573 |
. . . . . . . 8
⊢ (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) |
44 | | eqid 2738 |
. . . . . . . . . 10
⊢
ℕ0 = ℕ0 |
45 | 10 | iunrelexpmin2 40888 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ V ∧
ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
46 | 44, 45 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
47 | 46 | 19.21bi 2190 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ((( I ↾
(dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠 ∧ 𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
48 | 43, 47 | syl5bi 245 |
. . . . . . 7
⊢ (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
49 | 48 | ralrimiv 3095 |
. . . . . 6
⊢ (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
50 | | ssint 4852 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
51 | 49, 50 | sylibr 237 |
. . . . 5
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
52 | 35, 51 | eqssd 3894 |
. . . 4
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟)) |
53 | | oveq1 7179 |
. . . . . 6
⊢ (𝑎 = 𝑟 → (𝑎↑𝑟𝑛) = (𝑟↑𝑟𝑛)) |
54 | 53 | iuneq2d 4910 |
. . . . 5
⊢ (𝑎 = 𝑟 → ∪
𝑛 ∈
ℕ0 (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑟↑𝑟𝑛)) |
55 | | eqid 2738 |
. . . . 5
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) = (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛)) |
56 | | ovex 7205 |
. . . . . 6
⊢ (𝑟↑𝑟𝑛) ∈ V |
57 | 3, 56 | iunex 7696 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) ∈ V |
58 | 54, 55, 57 | fvmpt 6777 |
. . . 4
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑎↑𝑟𝑛))‘𝑟) = ∪ 𝑛 ∈ ℕ0
(𝑟↑𝑟𝑛)) |
59 | 52, 58 | eqtrd 2773 |
. . 3
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∪
𝑛 ∈
ℕ0 (𝑟↑𝑟𝑛)) |
60 | 59 | mpteq2ia 5121 |
. 2
⊢ (𝑟 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑟
∪ ran 𝑟)) ⊆ 𝑧 ∧ 𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
61 | 1, 60 | eqtri 2761 |
1
⊢ t* =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |