Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl3 Structured version   Visualization version   GIF version

Theorem dfrtrcl3 40434
Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14413. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl3 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrtrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 14339 . 2 t* = (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp0g 14373 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
3 nn0ex 11891 . . . . . . . . 9 0 ∈ V
4 0nn0 11900 . . . . . . . . 9 0 ∈ ℕ0
5 oveq1 7142 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4910 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑡𝑟𝑛))
7 oveq2 7143 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4927 . . . . . . . . . . . 12 𝑛 ∈ ℕ0 (𝑡𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘)
96, 8eqtrdi 2849 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
109cbvmptv 5133 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
1110ov2ssiunov2 40401 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1450 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 3954 . . . . . . 7 (𝑟 ∈ V → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
14 relexp1g 14377 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
15 1nn0 11901 . . . . . . . . 9 1 ∈ ℕ0
1610ov2ssiunov2 40401 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
173, 15, 16mp3an23 1450 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
1814, 17eqsstrrd 3954 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
19 nn0uz 12268 . . . . . . . 8 0 = (ℤ‘0)
2010iunrelexpuztr 40420 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ0 = (ℤ‘0) ∧ 0 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2119, 4, 20mp3an23 1450 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
22 fvex 6658 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V
23 sseq2 3941 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
24 sseq2 3941 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑟𝑧𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
25 id 22 . . . . . . . . . . . . 13 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2625, 25coeq12d 5699 . . . . . . . . . . . 12 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑧𝑧) = (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2726, 25sseq12d 3948 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((𝑧𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2823, 24, 273anbi123d 1433 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
2928a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
3029alrimiv 1928 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
31 elabgt 3609 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3222, 30, 31sylancr 590 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3313, 18, 21, 32mpbir3and 1339 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
34 intss1 4853 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
3533, 34syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
36 vex 3444 . . . . . . . . 9 𝑠 ∈ V
37 sseq2 3941 . . . . . . . . . 10 (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠))
38 sseq2 3941 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑟𝑧𝑟𝑠))
39 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑠𝑧 = 𝑠)
4039, 39coeq12d 5699 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
4140, 39sseq12d 3948 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
4237, 38, 413anbi123d 1433 . . . . . . . . 9 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
4336, 42elab 3615 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
44 eqid 2798 . . . . . . . . . 10 0 = ℕ0
4510iunrelexpmin2 40413 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4644, 45mpan2 690 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
474619.21bi 2186 . . . . . . . 8 (𝑟 ∈ V → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4843, 47syl5bi 245 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4948ralrimiv 3148 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
50 ssint 4854 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
5149, 50sylibr 237 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5235, 51eqssd 3932 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
53 oveq1 7142 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
5453iuneq2d 4910 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
55 eqid 2798 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))
56 ovex 7168 . . . . . 6 (𝑟𝑟𝑛) ∈ V
573, 56iunex 7651 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) ∈ V
5854, 55, 57fvmpt 6745 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
5952, 58eqtrd 2833 . . 3 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
6059mpteq2ia 5121 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
611, 60eqtri 2821 1 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  Vcvv 3441  cun 3879  wss 3881   cint 4838   ciun 4881  cmpt 5110   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  0cn0 11885  cuz 12231  t*crtcl 14337  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-rtrcl 14339  df-relexp 14371
This theorem is referenced by:  brfvrtrcld  40435  fvrtrcllb0d  40436  fvrtrcllb0da  40437  fvrtrcllb1d  40438  dfrtrcl4  40439  corcltrcl  40440  cotrclrcl  40443
  Copyright terms: Public domain W3C validator