Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl3 Structured version   Visualization version   GIF version

Theorem dfrtrcl3 41341
Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14773. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl3 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrtrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rtrcl 14699 . 2 t* = (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp0g 14733 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) = ( I ↾ (dom 𝑟 ∪ ran 𝑟)))
3 nn0ex 12239 . . . . . . . . 9 0 ∈ V
4 0nn0 12248 . . . . . . . . 9 0 ∈ ℕ0
5 oveq1 7282 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4953 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑡𝑟𝑛))
7 oveq2 7283 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4970 . . . . . . . . . . . 12 𝑛 ∈ ℕ0 (𝑡𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘)
96, 8eqtrdi 2794 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
109cbvmptv 5187 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑡𝑟𝑘))
1110ov2ssiunov2 41308 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 0 ∈ ℕ0) → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1452 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟0) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 3960 . . . . . . 7 (𝑟 ∈ V → ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
14 relexp1g 14737 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
15 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
1610ov2ssiunov2 41308 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ0 ∈ V ∧ 1 ∈ ℕ0) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
173, 15, 16mp3an23 1452 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
1814, 17eqsstrrd 3960 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
19 nn0uz 12620 . . . . . . . 8 0 = (ℤ‘0)
2010iunrelexpuztr 41327 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ0 = (ℤ‘0) ∧ 0 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2119, 4, 20mp3an23 1452 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
22 fvex 6787 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V
23 sseq2 3947 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
24 sseq2 3947 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑟𝑧𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
25 id 22 . . . . . . . . . . . . 13 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → 𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
2625, 25coeq12d 5773 . . . . . . . . . . . 12 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → (𝑧𝑧) = (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2726, 25sseq12d 3954 . . . . . . . . . . 11 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((𝑧𝑧) ⊆ 𝑧 ↔ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))
2823, 24, 273anbi123d 1435 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
2928a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
3029alrimiv 1930 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)))))
31 elabgt 3603 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3222, 30, 31sylancr 587 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))))
3313, 18, 21, 32mpbir3and 1341 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
34 intss1 4894 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
3533, 34syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
36 vex 3436 . . . . . . . . 9 𝑠 ∈ V
37 sseq2 3947 . . . . . . . . . 10 (𝑧 = 𝑠 → (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧 ↔ ( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠))
38 sseq2 3947 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑟𝑧𝑟𝑠))
39 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑠𝑧 = 𝑠)
4039, 39coeq12d 5773 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑧𝑧) = (𝑠𝑠))
4140, 39sseq12d 3954 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑧𝑧) ⊆ 𝑧 ↔ (𝑠𝑠) ⊆ 𝑠))
4237, 38, 413anbi123d 1435 . . . . . . . . 9 (𝑧 = 𝑠 → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
4336, 42elab 3609 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
44 eqid 2738 . . . . . . . . . 10 0 = ℕ0
4510iunrelexpmin2 41320 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ0 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4644, 45mpan2 688 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
474619.21bi 2182 . . . . . . . 8 (𝑟 ∈ V → ((( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑠𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4843, 47syl5bi 241 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
4948ralrimiv 3102 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
50 ssint 4895 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
5149, 50sylibr 233 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5235, 51eqssd 3938 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟))
53 oveq1 7282 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
5453iuneq2d 4953 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ0 (𝑎𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
55 eqid 2738 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))
56 ovex 7308 . . . . . 6 (𝑟𝑟𝑛) ∈ V
573, 56iunex 7811 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) ∈ V
5854, 55, 57fvmpt 6875 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
5952, 58eqtrd 2778 . . 3 (𝑟 ∈ V → {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
6059mpteq2ia 5177 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑟 ∪ ran 𝑟)) ⊆ 𝑧𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
611, 60eqtri 2766 1 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  cun 3885  wss 3887   cint 4879   ciun 4924  cmpt 5157   I cid 5488  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  0cn0 12233  cuz 12582  t*crtcl 14697  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-rtrcl 14699  df-relexp 14731
This theorem is referenced by:  brfvrtrcld  41342  fvrtrcllb0d  41343  fvrtrcllb0da  41344  fvrtrcllb1d  41345  dfrtrcl4  41346  corcltrcl  41347  cotrclrcl  41350
  Copyright terms: Public domain W3C validator