| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rtrclrec | Structured version Visualization version GIF version | ||
| Description: The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015.) |
| Ref | Expression |
|---|---|
| df-rtrclrec | ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crtrcl 15095 | . 2 class t*rec | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cvv 3479 | . . 3 class V | |
| 4 | vn | . . . 4 setvar 𝑛 | |
| 5 | cn0 12528 | . . . 4 class ℕ0 | |
| 6 | 2 | cv 1538 | . . . . 5 class 𝑟 |
| 7 | 4 | cv 1538 | . . . . 5 class 𝑛 |
| 8 | crelexp 15059 | . . . . 5 class ↑𝑟 | |
| 9 | 6, 7, 8 | co 7432 | . . . 4 class (𝑟↑𝑟𝑛) |
| 10 | 4, 5, 9 | ciun 4990 | . . 3 class ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) |
| 11 | 2, 3, 10 | cmpt 5224 | . 2 class (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
| 12 | 1, 11 | wceq 1539 | 1 wff t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rtrclreclem1 15097 dfrtrclrec2 15098 rtrclreclem2 15099 rtrclreclem4 15101 |
| Copyright terms: Public domain | W3C validator |