Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. . . . . . 7
β’ ((π β§ π
β V) β (π β V β¦ βͺ π β β0 (πβππ)) = (π β V β¦ βͺ π β β0 (πβππ))) |
2 | | oveq1 7412 |
. . . . . . . . 9
β’ (π = π
β (πβππ) = (π
βππ)) |
3 | 2 | iuneq2d 5025 |
. . . . . . . 8
β’ (π = π
β βͺ
π β
β0 (πβππ) = βͺ π β β0
(π
βππ)) |
4 | 3 | adantl 482 |
. . . . . . 7
β’ (((π β§ π
β V) β§ π = π
) β βͺ
π β
β0 (πβππ) = βͺ π β β0
(π
βππ)) |
5 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π
β V) β π
β V) |
6 | | nn0ex 12474 |
. . . . . . . . 9
β’
β0 β V |
7 | | ovex 7438 |
. . . . . . . . 9
β’ (π
βππ) β V |
8 | 6, 7 | iunex 7951 |
. . . . . . . 8
β’ βͺ π β β0 (π
βππ) β V |
9 | 8 | a1i 11 |
. . . . . . 7
β’ ((π β§ π
β V) β βͺ π β β0 (π
βππ) β V) |
10 | 1, 4, 5, 9 | fvmptd 7002 |
. . . . . 6
β’ ((π β§ π
β V) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) = βͺ
π β
β0 (π
βππ)) |
11 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = 0 β (π β β0 β 0 β
β0)) |
12 | 11 | anbi1d 630 |
. . . . . . . . . . . . . . . . . 18
β’ (π = 0 β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (0 β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))))) |
13 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = 0 β (π
βππ) = (π
βπ0)) |
14 | 13 | sseq1d 4012 |
. . . . . . . . . . . . . . . . . 18
β’ (π = 0 β ((π
βππ) β π β (π
βπ0) β π )) |
15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
β’ (π = 0 β (((π β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β ((0 β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ0) β π ))) |
16 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π β β0 β π β
β0)) |
17 | 16 | anbi1d 630 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))))) |
18 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π
βππ) = (π
βππ)) |
19 | 18 | sseq1d 4012 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β ((π
βππ) β π β (π
βππ) β π )) |
20 | 17, 19 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ))) |
21 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π + 1) β (π β β0 β (π + 1) β
β0)) |
22 | 21 | anbi1d 630 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π + 1) β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))))) |
23 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π + 1) β (π
βππ) = (π
βπ(π + 1))) |
24 | 23 | sseq1d 4012 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π + 1) β ((π
βππ) β π β (π
βπ(π + 1)) β π )) |
25 | 22, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
β’ (π = (π + 1) β (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β (((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ(π + 1)) β π ))) |
26 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π β β0 β π β
β0)) |
27 | 26 | anbi1d 630 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))))) |
28 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π
βππ) = (π
βππ)) |
29 | 28 | sseq1d 4012 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β ((π
βππ) β π β (π
βππ) β π )) |
30 | 27, 29 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β ((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ))) |
31 | | simprll 777 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β π) |
32 | | rtrclreclem.1 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β Rel π
) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β Rel π
) |
34 | | simprlr 778 |
. . . . . . . . . . . . . . . . . . 19
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β π
β V) |
35 | 33, 34 | relexp0d 14967 |
. . . . . . . . . . . . . . . . . 18
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ0) = ( I βΎ
βͺ βͺ π
)) |
36 | | relfld 6271 |
. . . . . . . . . . . . . . . . . . . 20
β’ (Rel
π
β βͺ βͺ π
= (dom π
βͺ ran π
)) |
37 | 33, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β βͺ
βͺ π
= (dom π
βͺ ran π
)) |
38 | | simprrr 780 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β ( I βΎ (dom π
βͺ ran π
)) β π ) |
39 | 38 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β ( I βΎ (dom π
βͺ ran π
)) β π ) |
40 | | reseq2 5974 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (βͺ βͺ π
= (dom π
βͺ ran π
) β ( I βΎ βͺ βͺ π
) = ( I βΎ (dom π
βͺ ran π
))) |
41 | 40 | sseq1d 4012 |
. . . . . . . . . . . . . . . . . . . 20
β’ (βͺ βͺ π
= (dom π
βͺ ran π
) β (( I βΎ βͺ βͺ π
) β π β ( I βΎ (dom π
βͺ ran π
)) β π )) |
42 | 39, 41 | imbitrrid 245 |
. . . . . . . . . . . . . . . . . . 19
β’ (βͺ βͺ π
= (dom π
βͺ ran π
) β ((0 β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β ( I βΎ βͺ βͺ π
) β π )) |
43 | 37, 42 | mpcom 38 |
. . . . . . . . . . . . . . . . . 18
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β ( I βΎ βͺ βͺ π
) β π ) |
44 | 35, 43 | eqsstrd 4019 |
. . . . . . . . . . . . . . . . 17
β’ ((0
β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ0) β π ) |
45 | | simprrr 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β π β
β0) |
46 | 45 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))) β π β
β0) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))) β π β
β0) |
48 | 47 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
π β
β0) |
49 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
(π β§ π
β V)) |
50 | | simprrl 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
(π β π ) β π ) |
51 | | simprrl 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))) β π
β π ) |
52 | 51 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
π
β π ) |
53 | | simprrl 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))) β ( I
βΎ (dom π
βͺ ran
π
)) β π ) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))) β ( I
βΎ (dom π
βͺ ran
π
)) β π ) |
55 | 54 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β ( I
βΎ (dom π
βͺ ran
π
)) β π ) |
56 | 50, 52, 55 | jca32 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) |
57 | 48, 49, 56 | jca32 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
(π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))))) |
58 | | simprrl 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ ((π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β ((π β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π )) |
59 | 58 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))) β
((π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π )) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))) β
((π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π )) |
61 | 60 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
((π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π )) |
62 | 57, 61 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
(π
βππ) β π ) |
63 | | simprll 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
π) |
64 | 63 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
π) |
65 | 64, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β Rel
π
) |
66 | 48 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
π β
β0) |
67 | 65, 66 | relexpsucrd 14976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
(π
βπ(π + 1)) = ((π
βππ) β π
)) |
68 | 52 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
π
β π ) |
69 | | coss2 5854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π
β π β ((π
βππ) β π
) β ((π
βππ) β π )) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
((π
βππ) β π
) β ((π
βππ) β π )) |
71 | | coss1 5853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((π
βππ) β π β ((π
βππ) β π ) β (π β π )) |
72 | 71, 50 | sylan9ss 3994 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
((π
βππ) β π ) β π ) |
73 | 70, 72 | sstrd 3991 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
((π
βππ) β π
) β π ) |
74 | 67, 73 | eqsstrd 4019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π
βππ) β π β§ ((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))))) β
(π
βπ(π + 1)) β π ) |
75 | 62, 74 | mpancom 686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))))) β
(π
βπ(π + 1)) β π ) |
76 | 75 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))))) β
((π + 1) β
β0 β (π
βπ(π + 1)) β π )) |
77 | 76 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β π ) β π β§ (π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)))) β
((π β§ π
β V) β ((π + 1) β β0 β
(π
βπ(π + 1)) β π ))) |
78 | 77 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π
β π β§ (( I βΎ (dom π
βͺ ran π
)) β π β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β ((π β π ) β π β ((π β§ π
β V) β ((π + 1) β β0 β
(π
βπ(π + 1)) β π )))) |
79 | 78 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)) β ((π β π ) β π β ((π β§ π
β V) β ((π + 1) β β0 β
(π
βπ(π + 1)) β π )))) |
80 | 79 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β π ) β π β§ ((π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β ((π β§ π
β V) β ((π + 1) β β0 β
(π
βπ(π + 1)) β π ))) |
81 | 80 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)) β ((π β§ π
β V) β ((π + 1) β β0 β
(π
βπ(π + 1)) β π ))) |
82 | 81 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π
β V) β§ (((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β ((π + 1) β β0
β (π
βπ(π + 1)) β π )) |
83 | 82 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)) β ((π + 1) β β0
β (π
βπ(π + 1)) β π )) |
84 | 83 | impcom 408 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π + 1) β β0
β§ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0))) β (π
βπ(π + 1)) β π ) |
85 | 84 | anassrs 468 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β§ (((π β β0 β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0)) β (π
βπ(π + 1)) β π ) |
86 | 85 | expcom 414 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β§ π β β0) β (((π + 1) β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ(π + 1)) β π )) |
87 | 86 | expcom 414 |
. . . . . . . . . . . . . . . . 17
β’ (π β β0
β (((π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) β (((π + 1) β β0 β§
((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βπ(π + 1)) β π ))) |
88 | 15, 20, 25, 30, 44, 87 | nn0ind 12653 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β ((π β
β0 β§ ((π
β§ π
β V) β§
((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π )) |
89 | 88 | anabsi5 667 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ ((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )))) β (π
βππ) β π ) |
90 | 89 | expcom 414 |
. . . . . . . . . . . . . 14
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β (π β β0 β (π
βππ) β π )) |
91 | 90 | ralrimiv 3145 |
. . . . . . . . . . . . 13
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β βπ β β0 (π
βππ) β π ) |
92 | | iunss 5047 |
. . . . . . . . . . . . 13
β’ (βͺ π β β0 (π
βππ) β π β βπ β β0 (π
βππ) β π ) |
93 | 91, 92 | sylibr 233 |
. . . . . . . . . . . 12
β’ (((π β§ π
β V) β§ ((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ))) β βͺ π β β0 (π
βππ) β π ) |
94 | 93 | expcom 414 |
. . . . . . . . . . 11
β’ (((π β π ) β π β§ (π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π )) β ((π β§ π
β V) β βͺ π β β0 (π
βππ) β π )) |
95 | 94 | expcom 414 |
. . . . . . . . . 10
β’ ((π
β π β§ ( I βΎ (dom π
βͺ ran π
)) β π ) β ((π β π ) β π β ((π β§ π
β V) β βͺ π β β0 (π
βππ) β π ))) |
96 | 95 | expcom 414 |
. . . . . . . . 9
β’ (( I
βΎ (dom π
βͺ ran
π
)) β π β (π
β π β ((π β π ) β π β ((π β§ π
β V) β βͺ π β β0 (π
βππ) β π )))) |
97 | 96 | 3imp1 1347 |
. . . . . . . 8
β’ (((( I
βΎ (dom π
βͺ ran
π
)) β π β§ π
β π β§ (π β π ) β π ) β§ (π β§ π
β V)) β βͺ π β β0 (π
βππ) β π ) |
98 | 97 | expcom 414 |
. . . . . . 7
β’ ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β βͺ
π β
β0 (π
βππ) β π )) |
99 | | sseq1 4006 |
. . . . . . . 8
β’ (((π β V β¦ βͺ π β β0 (πβππ))βπ
) = βͺ
π β
β0 (π
βππ) β (((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π β βͺ
π β
β0 (π
βππ) β π )) |
100 | 99 | imbi2d 340 |
. . . . . . 7
β’ (((π β V β¦ βͺ π β β0 (πβππ))βπ
) = βͺ
π β
β0 (π
βππ) β (((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π ) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β βͺ
π β
β0 (π
βππ) β π ))) |
101 | 98, 100 | imbitrrid 245 |
. . . . . 6
β’ (((π β V β¦ βͺ π β β0 (πβππ))βπ
) = βͺ
π β
β0 (π
βππ) β ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π ))) |
102 | 10, 101 | mpcom 38 |
. . . . 5
β’ ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π )) |
103 | | df-rtrclrec 14999 |
. . . . . 6
β’ t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) |
104 | | fveq1 6887 |
. . . . . . . . 9
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β (t*recβπ
) = ((π β V β¦ βͺ π β β0 (πβππ))βπ
)) |
105 | 104 | sseq1d 4012 |
. . . . . . . 8
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β ((t*recβπ
) β π β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π )) |
106 | 105 | imbi2d 340 |
. . . . . . 7
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β (((( I βΎ (dom
π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π ) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π ))) |
107 | 106 | imbi2d 340 |
. . . . . 6
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β (((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) β ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π )))) |
108 | 103, 107 | ax-mp 5 |
. . . . 5
β’ (((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) β ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) β π ))) |
109 | 102, 108 | mpbir 230 |
. . . 4
β’ ((π β§ π
β V) β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |
110 | 109 | ex 413 |
. . 3
β’ (π β (π
β V β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π ))) |
111 | | fvprc 6880 |
. . . . 5
β’ (Β¬
π
β V β
(t*recβπ
) =
β
) |
112 | | 0ss 4395 |
. . . . 5
β’ β
β π |
113 | 111, 112 | eqsstrdi 4035 |
. . . 4
β’ (Β¬
π
β V β
(t*recβπ
) β
π ) |
114 | 113 | a1d 25 |
. . 3
β’ (Β¬
π
β V β ((( I
βΎ (dom π
βͺ ran
π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |
115 | 110, 114 | pm2.61d1 180 |
. 2
β’ (π β ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |
116 | 115 | alrimiv 1930 |
1
β’ (π β βπ ((( I βΎ (dom π
βͺ ran π
)) β π β§ π
β π β§ (π β π ) β π ) β (t*recβπ
) β π )) |