MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem4 Structured version   Visualization version   GIF version

Theorem rtrclreclem4 14419
Description: The reflexive, transitive closure of 𝑅 is the smallest reflexive, transitive relation which contains 𝑅 and the identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
rtrclreclem.rel (𝜑 → Rel 𝑅)
rtrclreclem.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem4 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
Distinct variable group:   𝜑,𝑠
Allowed substitution hint:   𝑅(𝑠)

Proof of Theorem rtrclreclem4
Dummy variables 𝑛 𝑖 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . . . . 5 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
2 oveq1 7162 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
32iuneq2d 4947 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
43adantl 484 . . . . 5 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
5 rtrclreclem.rex . . . . 5 (𝜑𝑅 ∈ V)
6 nn0ex 11902 . . . . . . 7 0 ∈ V
7 ovex 7188 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
86, 7iunex 7668 . . . . . 6 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
98a1i 11 . . . . 5 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
101, 4, 5, 9fvmptd 6774 . . . 4 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
11 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1211anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → ((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))))))
13 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑅𝑟𝑖) = (𝑅𝑟0))
1413sseq1d 3997 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → ((𝑅𝑟𝑖) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
1512, 14imbi12d 347 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑖) ⊆ 𝑠) ↔ ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟0) ⊆ 𝑠)))
16 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑚 → (𝑖 ∈ ℕ0𝑚 ∈ ℕ0))
1716anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → ((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))))))
18 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑚 → (𝑅𝑟𝑖) = (𝑅𝑟𝑚))
1918sseq1d 3997 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → ((𝑅𝑟𝑖) ⊆ 𝑠 ↔ (𝑅𝑟𝑚) ⊆ 𝑠))
2017, 19imbi12d 347 . . . . . . . . . . . . . . 15 (𝑖 = 𝑚 → (((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑖) ⊆ 𝑠) ↔ ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠)))
21 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚 + 1) → (𝑖 ∈ ℕ0 ↔ (𝑚 + 1) ∈ ℕ0))
2221anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚 + 1) → ((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))))))
23 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑚 + 1) → (𝑅𝑟𝑖) = (𝑅𝑟(𝑚 + 1)))
2423sseq1d 3997 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑚 + 1) → ((𝑅𝑟𝑖) ⊆ 𝑠 ↔ (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))
2522, 24imbi12d 347 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚 + 1) → (((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑖) ⊆ 𝑠) ↔ (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)))
26 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑛 → (𝑖 ∈ ℕ0𝑛 ∈ ℕ0))
2726anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → ((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (𝑛 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))))))
28 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑛 → (𝑅𝑟𝑖) = (𝑅𝑟𝑛))
2928sseq1d 3997 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → ((𝑅𝑟𝑖) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3027, 29imbi12d 347 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (((𝑖 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑖) ⊆ 𝑠) ↔ ((𝑛 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑛) ⊆ 𝑠)))
31 simprl 769 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → 𝜑)
32 rtrclreclem.rel . . . . . . . . . . . . . . . . . 18 (𝜑 → Rel 𝑅)
3332, 5relexp0d 14382 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
3431, 33syl 17 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟0) = ( I ↾ 𝑅))
3531, 32syl 17 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → Rel 𝑅)
36 relfld 6125 . . . . . . . . . . . . . . . . . 18 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → 𝑅 = (dom 𝑅 ∪ ran 𝑅))
38 simprrr 780 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)
3938adantl 484 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)
40 reseq2 5847 . . . . . . . . . . . . . . . . . . 19 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
4140sseq1d 3997 . . . . . . . . . . . . . . . . . 18 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (( I ↾ 𝑅) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
4239, 41syl5ibr 248 . . . . . . . . . . . . . . . . 17 ( 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ 𝑅) ⊆ 𝑠))
4337, 42mpcom 38 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ 𝑅) ⊆ 𝑠)
4434, 43eqsstrd 4004 . . . . . . . . . . . . . . 15 ((0 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟0) ⊆ 𝑠)
45 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → 𝑚 ∈ ℕ0)
4645adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → 𝑚 ∈ ℕ0)
4746adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → 𝑚 ∈ ℕ0)
4847adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → 𝑚 ∈ ℕ0)
49 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → 𝜑)
50 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → (𝑠𝑠) ⊆ 𝑠)
51 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → 𝑅𝑠)
5251adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → 𝑅𝑠)
53 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)
5453adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)
5554adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)
5650, 52, 55jca32 518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))
5748, 49, 56jca32 518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))))
58 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠))
5958adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠))
6059adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠))
6160adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠))
6257, 61mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → (𝑅𝑟𝑚) ⊆ 𝑠)
6348adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → 𝑚 ∈ ℕ0)
64 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → 𝜑)
6564, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → Rel 𝑅)
6664, 5syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → 𝑅 ∈ V)
6765, 66relexpsucrd 14388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → (𝑚 ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅)))
6863, 67mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
6952adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → 𝑅𝑠)
70 coss2 5726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅𝑠 → ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ ((𝑅𝑟𝑚) ∘ 𝑠))
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ ((𝑅𝑟𝑚) ∘ 𝑠))
72 coss1 5725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅𝑟𝑚) ⊆ 𝑠 → ((𝑅𝑟𝑚) ∘ 𝑠) ⊆ (𝑠𝑠))
7372, 50sylan9ss 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ 𝑠) ⊆ 𝑠)
7471, 73sstrd 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ 𝑠)
7568, 74eqsstrd 4004 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)
7662, 75mpancom 686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)
7776expcom 416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))
7877expcom 416 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → (𝜑 → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)))
7978expcom 416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑠𝑠) ⊆ 𝑠 → (𝜑 → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))))
8079anassrs 470 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → ((𝑠𝑠) ⊆ 𝑠 → (𝜑 → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))))
8180impcom 410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑠𝑠) ⊆ 𝑠 ∧ ((𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → (𝜑 → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)))
8281anassrs 470 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → (𝜑 → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)))
8382impcom 410 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))
8483anassrs 470 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → ((𝑚 + 1) ∈ ℕ0 → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))
8584impcom 410 . . . . . . . . . . . . . . . . . 18 (((𝑚 + 1) ∈ ℕ0 ∧ ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)
8685anassrs 470 . . . . . . . . . . . . . . . . 17 ((((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ∧ (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)
8786expcom 416 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠))
8887expcom 416 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → (((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑚) ⊆ 𝑠) → (((𝑚 + 1) ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟(𝑚 + 1)) ⊆ 𝑠)))
8915, 20, 25, 30, 44, 88nn0ind 12076 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑛) ⊆ 𝑠))
9089anabsi5 667 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ (𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅𝑟𝑛) ⊆ 𝑠)
9190expcom 416 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
9291ralrimiv 3181 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
93 iunss 4968 . . . . . . . . . . 11 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
9492, 93sylibr 236 . . . . . . . . . 10 ((𝜑 ∧ ((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
9594expcom 416 . . . . . . . . 9 (((𝑠𝑠) ⊆ 𝑠 ∧ (𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) → (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
9695expcom 416 . . . . . . . 8 ((𝑅𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) → ((𝑠𝑠) ⊆ 𝑠 → (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
9796expcom 416 . . . . . . 7 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 → (𝑅𝑠 → ((𝑠𝑠) ⊆ 𝑠 → (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))))
98973imp1 1343 . . . . . 6 (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ∧ 𝜑) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
9998expcom 416 . . . . 5 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
100 sseq1 3991 . . . . . 6 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
101100imbi2d 343 . . . . 5 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
10299, 101syl5ibr 248 . . . 4 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠)))
10310, 102mpcom 38 . . 3 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠))
104 df-rtrclrec 14414 . . . 4 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
105 fveq1 6668 . . . . . . 7 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
106105sseq1d 3997 . . . . . 6 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((t*rec‘𝑅) ⊆ 𝑠 ↔ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠))
107106imbi2d 343 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠)))
108107imbi2d 343 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) ↔ (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠))))
109104, 108ax-mp 5 . . 3 ((𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) ↔ (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) ⊆ 𝑠)))
110103, 109mpbir 233 . 2 (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
111110alrimiv 1924 1 (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cun 3933  wss 3935   cuni 4837   ciun 4918  cmpt 5145   I cid 5458  dom cdm 5554  ran crn 5555  cres 5556  ccom 5558  Rel wrel 5559  cfv 6354  (class class class)co 7155  0cc0 10536  1c1 10537   + caddc 10539  0cn0 11896  𝑟crelexp 14378  t*reccrtrcl 14413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-seq 13369  df-relexp 14379  df-rtrclrec 14414
This theorem is referenced by:  dfrtrcl2  14420
  Copyright terms: Public domain W3C validator