Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) |
2 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) |
3 | 2 | iuneq2d 4950 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ∪
𝑛 ∈
ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑅↑𝑟𝑛)) |
4 | 3 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ 𝑟 = 𝑅) → ∪
𝑛 ∈
ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑅↑𝑟𝑛)) |
5 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑅 ∈ V) |
6 | | nn0ex 12169 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
7 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝑅↑𝑟𝑛) ∈ V |
8 | 6, 7 | iunex 7784 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
10 | 1, 4, 5, 9 | fvmptd 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛)) |
11 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 0 → (𝑖 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
12 | 11 | anbi1d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 0 → ((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (0 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))))) |
13 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 0 → (𝑅↑𝑟𝑖) = (𝑅↑𝑟0)) |
14 | 13 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 0 → ((𝑅↑𝑟𝑖) ⊆ 𝑠 ↔ (𝑅↑𝑟0) ⊆ 𝑠)) |
15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (((𝑖 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑖) ⊆ 𝑠) ↔ ((0 ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟0) ⊆ 𝑠))) |
16 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → (𝑖 ∈ ℕ0 ↔ 𝑚 ∈
ℕ0)) |
17 | 16 | anbi1d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → ((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))))) |
18 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → (𝑅↑𝑟𝑖) = (𝑅↑𝑟𝑚)) |
19 | 18 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → ((𝑅↑𝑟𝑖) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑚) ⊆ 𝑠)) |
20 | 17, 19 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑚 → (((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑖) ⊆ 𝑠) ↔ ((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠))) |
21 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑚 + 1) → (𝑖 ∈ ℕ0 ↔ (𝑚 + 1) ∈
ℕ0)) |
22 | 21 | anbi1d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑚 + 1) → ((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))))) |
23 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑚 + 1) → (𝑅↑𝑟𝑖) = (𝑅↑𝑟(𝑚 + 1))) |
24 | 23 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑚 + 1) → ((𝑅↑𝑟𝑖) ⊆ 𝑠 ↔ (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)) |
25 | 22, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑚 + 1) → (((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑖) ⊆ 𝑠) ↔ (((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠))) |
26 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑛 → (𝑖 ∈ ℕ0 ↔ 𝑛 ∈
ℕ0)) |
27 | 26 | anbi1d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑛 → ((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ↔ (𝑛 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))))) |
28 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑛 → (𝑅↑𝑟𝑖) = (𝑅↑𝑟𝑛)) |
29 | 28 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑛 → ((𝑅↑𝑟𝑖) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
30 | 27, 29 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑛 → (((𝑖 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑖) ⊆ 𝑠) ↔ ((𝑛 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
31 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → 𝜑) |
32 | | rtrclreclem.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → Rel 𝑅) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → Rel 𝑅) |
34 | | simprlr 776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → 𝑅 ∈ V) |
35 | 33, 34 | relexp0d 14663 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟0) = ( I ↾
∪ ∪ 𝑅)) |
36 | | relfld 6167 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
37 | 33, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ∪
∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
38 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) |
40 | | reseq2 5875 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
41 | 40 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) |
42 | 39, 41 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅) → ((0 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑠)) |
43 | 37, 42 | mpcom 38 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑠) |
44 | 35, 43 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟0) ⊆ 𝑠) |
45 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → 𝑚 ∈
ℕ0) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → 𝑚 ∈
ℕ0) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → 𝑚 ∈
ℕ0) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
𝑚 ∈
ℕ0) |
49 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
(𝜑 ∧ 𝑅 ∈ V)) |
50 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
(𝑠 ∘ 𝑠) ⊆ 𝑠) |
51 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → 𝑅 ⊆ 𝑠) |
52 | 51 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
𝑅 ⊆ 𝑠) |
53 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) → ( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) → ( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠) |
55 | 54 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) → ( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠) |
56 | 50, 52, 55 | jca32 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) |
57 | 48, 49, 56 | jca32 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
(𝑚 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))))) |
58 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑚 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠)) |
59 | 58 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) →
((𝑚 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠)) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) →
((𝑚 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠)) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
((𝑚 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠)) |
62 | 57, 61 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
(𝑅↑𝑟𝑚) ⊆ 𝑠) |
63 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
𝜑) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
𝜑) |
65 | 64, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) → Rel
𝑅) |
66 | 48 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
𝑚 ∈
ℕ0) |
67 | 65, 66 | relexpsucrd 14672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
(𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
68 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
𝑅 ⊆ 𝑠) |
69 | | coss2 5754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑅 ⊆ 𝑠 → ((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ ((𝑅↑𝑟𝑚) ∘ 𝑠)) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ ((𝑅↑𝑟𝑚) ∘ 𝑠)) |
71 | | coss1 5753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅↑𝑟𝑚) ⊆ 𝑠 → ((𝑅↑𝑟𝑚) ∘ 𝑠) ⊆ (𝑠 ∘ 𝑠)) |
72 | 71, 50 | sylan9ss 3930 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ 𝑠) ⊆ 𝑠) |
73 | 70, 72 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ 𝑠) |
74 | 67, 73 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅↑𝑟𝑚) ⊆ 𝑠 ∧ ((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))))) →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠) |
75 | 62, 74 | mpancom 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))))) →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠) |
76 | 75 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))))) →
((𝑚 + 1) ∈
ℕ0 → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)) |
77 | 76 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)))) →
((𝜑 ∧ 𝑅 ∈ V) → ((𝑚 + 1) ∈ ℕ0 →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠))) |
78 | 77 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ⊆ 𝑠 ∧ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑠 ∘ 𝑠) ⊆ 𝑠 → ((𝜑 ∧ 𝑅 ∈ V) → ((𝑚 + 1) ∈ ℕ0 →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)))) |
79 | 78 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → ((𝑠 ∘ 𝑠) ⊆ 𝑠 → ((𝜑 ∧ 𝑅 ∈ V) → ((𝑚 + 1) ∈ ℕ0 →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)))) |
80 | 79 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ ((𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝜑 ∧ 𝑅 ∈ V) → ((𝑚 + 1) ∈ ℕ0 →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠))) |
81 | 80 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → ((𝜑 ∧ 𝑅 ∈ V) → ((𝑚 + 1) ∈ ℕ0 →
(𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠))) |
82 | 81 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → ((𝑚 + 1) ∈ ℕ0
→ (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)) |
83 | 82 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → ((𝑚 + 1) ∈ ℕ0
→ (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)) |
84 | 83 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑚 + 1) ∈ ℕ0
∧ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0))) → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠) |
85 | 84 | anassrs 467 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) ∧ (((𝑚 ∈ ℕ0 ∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0)) → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠) |
86 | 85 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠)) |
87 | 86 | expcom 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑚) ⊆ 𝑠) → (((𝑚 + 1) ∈ ℕ0 ∧
((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟(𝑚 + 1)) ⊆ 𝑠))) |
88 | 15, 20, 25, 30, 44, 87 | nn0ind 12345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ∧ ((𝜑
∧ 𝑅 ∈ V) ∧
((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
89 | 88 | anabsi5 665 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ ((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)))) → (𝑅↑𝑟𝑛) ⊆ 𝑠) |
90 | 89 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → (𝑛 ∈ ℕ0 → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
91 | 90 | ralrimiv 3106 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
92 | | iunss 4971 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
93 | 91, 92 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑅 ∈ V) ∧ ((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
94 | 93 | expcom 413 |
. . . . . . . . . . 11
⊢ (((𝑠 ∘ 𝑠) ⊆ 𝑠 ∧ (𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) → ((𝜑 ∧ 𝑅 ∈ V) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
95 | 94 | expcom 413 |
. . . . . . . . . 10
⊢ ((𝑅 ⊆ 𝑠 ∧ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠) → ((𝑠 ∘ 𝑠) ⊆ 𝑠 → ((𝜑 ∧ 𝑅 ∈ V) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
96 | 95 | expcom 413 |
. . . . . . . . 9
⊢ (( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠 → (𝑅 ⊆ 𝑠 → ((𝑠 ∘ 𝑠) ⊆ 𝑠 → ((𝜑 ∧ 𝑅 ∈ V) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)))) |
97 | 96 | 3imp1 1345 |
. . . . . . . 8
⊢ (((( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) ∧ (𝜑 ∧ 𝑅 ∈ V)) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
98 | 97 | expcom 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
99 | | sseq1 3942 |
. . . . . . . 8
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠 ↔ ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
100 | 99 | imbi2d 340 |
. . . . . . 7
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
101 | 98, 100 | syl5ibr 245 |
. . . . . 6
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠))) |
102 | 10, 101 | mpcom 38 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠)) |
103 | | df-rtrclrec 14695 |
. . . . . 6
⊢ t*rec =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
104 | | fveq1 6755 |
. . . . . . . . 9
⊢ (t*rec =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
105 | 104 | sseq1d 3948 |
. . . . . . . 8
⊢ (t*rec =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((t*rec‘𝑅) ⊆ 𝑠 ↔ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠)) |
106 | 105 | imbi2d 340 |
. . . . . . 7
⊢ (t*rec =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (((( I ↾ (dom
𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠))) |
107 | 106 | imbi2d 340 |
. . . . . 6
⊢ (t*rec =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) ↔ ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠)))) |
108 | 103, 107 | ax-mp 5 |
. . . . 5
⊢ (((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) ↔ ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) ⊆ 𝑠))) |
109 | 102, 108 | mpbir 230 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ V) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) |
110 | 109 | ex 412 |
. . 3
⊢ (𝜑 → (𝑅 ∈ V → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠))) |
111 | | fvprc 6748 |
. . . . 5
⊢ (¬
𝑅 ∈ V →
(t*rec‘𝑅) =
∅) |
112 | | 0ss 4327 |
. . . . 5
⊢ ∅
⊆ 𝑠 |
113 | 111, 112 | eqsstrdi 3971 |
. . . 4
⊢ (¬
𝑅 ∈ V →
(t*rec‘𝑅) ⊆
𝑠) |
114 | 113 | a1d 25 |
. . 3
⊢ (¬
𝑅 ∈ V → ((( I
↾ (dom 𝑅 ∪ ran
𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) |
115 | 110, 114 | pm2.61d1 180 |
. 2
⊢ (𝜑 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) |
116 | 115 | alrimiv 1931 |
1
⊢ (𝜑 → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (t*rec‘𝑅) ⊆ 𝑠)) |