![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclreclem2 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) |
Ref | Expression |
---|---|
rtrclreclem.ex | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
rtrclreclem2 | ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 11725 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
2 | ssidd 3881 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ 𝑅) | |
3 | rtrclreclem.ex | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ V) | |
4 | 3 | relexp1d 14251 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
5 | 2, 4 | sseqtr4d 3899 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ (𝑅↑𝑟1)) |
6 | oveq2 6984 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
7 | 6 | sseq2d 3890 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅 ⊆ (𝑅↑𝑟𝑛) ↔ 𝑅 ⊆ (𝑅↑𝑟1))) |
8 | 7 | rspcev 3536 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 𝑅 ⊆ (𝑅↑𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
9 | 1, 5, 8 | sylancr 578 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
10 | ssiun 4836 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛) → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
12 | eqidd 2780 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) | |
13 | oveq1 6983 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
14 | 13 | iuneq2d 4820 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
15 | 14 | adantl 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
16 | nn0ex 11714 | . . . . . 6 ⊢ ℕ0 ∈ V | |
17 | ovex 7008 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
18 | 16, 17 | iunex 7481 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
20 | 12, 15, 3, 19 | fvmptd 6601 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
21 | 11, 20 | sseqtr4d 3899 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
22 | df-rtrclrec 14276 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
23 | fveq1 6498 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
24 | 23 | sseq2d 3890 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
25 | 24 | imbi2d 333 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
26 | 22, 25 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
27 | 21, 26 | mpbir 223 | 1 ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∃wrex 3090 Vcvv 3416 ⊆ wss 3830 ∪ ciun 4792 ↦ cmpt 5008 ‘cfv 6188 (class class class)co 6976 1c1 10336 ℕ0cn0 11707 ↑𝑟crelexp 14240 t*reccrtrcl 14275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-seq 13185 df-relexp 14241 df-rtrclrec 14276 |
This theorem is referenced by: dfrtrcl2 14282 |
Copyright terms: Public domain | W3C validator |