![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclreclem2 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
Ref | Expression |
---|---|
rtrclreclem2.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem2.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
rtrclreclem2 | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12539 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
2 | ssid 4018 | . . . . . 6 ⊢ ( I ↾ ∪ ∪ 𝑅) ⊆ ( I ↾ ∪ ∪ 𝑅) | |
3 | rtrclreclem2.1 | . . . . . . 7 ⊢ (𝜑 → Rel 𝑅) | |
4 | rtrclreclem2.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | 3, 4 | relexp0d 15060 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
6 | 2, 5 | sseqtrrid 4049 | . . . . 5 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) |
7 | oveq2 7439 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
8 | 7 | sseq2d 4028 | . . . . . 6 ⊢ (𝑛 = 0 → (( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0))) |
9 | 8 | rspcev 3622 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
10 | 1, 6, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
11 | ssiun 5051 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
13 | 4 | elexd 3502 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
14 | nn0ex 12530 | . . . . 5 ⊢ ℕ0 ∈ V | |
15 | ovex 7464 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
16 | 14, 15 | iunex 7992 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
17 | oveq1 7438 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
18 | 17 | iuneq2d 5027 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
19 | eqid 2735 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
20 | 18, 19 | fvmptg 7014 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
21 | 13, 16, 20 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
22 | 12, 21 | sseqtrrd 4037 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
23 | df-rtrclrec 15092 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
24 | fveq1 6906 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
25 | 24 | sseq2d 4028 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 ∪ cuni 4912 ∪ ciun 4996 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ℕ0cn0 12524 ↑𝑟crelexp 15055 t*reccrtrcl 15091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-n0 12525 df-relexp 15056 df-rtrclrec 15092 |
This theorem is referenced by: dfrtrcl2 15098 |
Copyright terms: Public domain | W3C validator |