MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem2 Structured version   Visualization version   GIF version

Theorem rtrclreclem2 14768
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypotheses
Ref Expression
rtrclreclem2.1 (𝜑 → Rel 𝑅)
rtrclreclem2.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
rtrclreclem2 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem2
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12248 . . . . 5 0 ∈ ℕ0
2 ssid 3948 . . . . . 6 ( I ↾ 𝑅) ⊆ ( I ↾ 𝑅)
3 rtrclreclem2.1 . . . . . . 7 (𝜑 → Rel 𝑅)
4 rtrclreclem2.2 . . . . . . 7 (𝜑𝑅𝑉)
53, 4relexp0d 14733 . . . . . 6 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
62, 5sseqtrrid 3979 . . . . 5 (𝜑 → ( I ↾ 𝑅) ⊆ (𝑅𝑟0))
7 oveq2 7279 . . . . . . 7 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
87sseq2d 3958 . . . . . 6 (𝑛 = 0 → (( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) ↔ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)))
98rspcev 3561 . . . . 5 ((0 ∈ ℕ0 ∧ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
101, 6, 9sylancr 587 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
11 ssiun 4981 . . . 4 (∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1210, 11syl 17 . . 3 (𝜑 → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
134elexd 3451 . . . 4 (𝜑𝑅 ∈ V)
14 nn0ex 12239 . . . . 5 0 ∈ V
15 ovex 7304 . . . . 5 (𝑅𝑟𝑛) ∈ V
1614, 15iunex 7804 . . . 4 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
17 oveq1 7278 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1817iuneq2d 4959 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
19 eqid 2740 . . . . 5 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
2018, 19fvmptg 6870 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2113, 16, 20sylancl 586 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2212, 21sseqtrrd 3967 . 2 (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
23 df-rtrclrec 14765 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
24 fveq1 6770 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2524sseq2d 3958 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (( I ↾ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2625imbi2d 341 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2723, 26ax-mp 5 . 2 ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2822, 27mpbir 230 1 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2110  wrex 3067  Vcvv 3431  wss 3892   cuni 4845   ciun 4930  cmpt 5162   I cid 5489  cres 5592  Rel wrel 5595  cfv 6432  (class class class)co 7271  0cc0 10872  0cn0 12233  𝑟crelexp 14728  t*reccrtrcl 14764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-mulcl 10934  ax-i2m1 10940
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-nn 11974  df-n0 12234  df-relexp 14729  df-rtrclrec 14765
This theorem is referenced by:  dfrtrcl2  14771
  Copyright terms: Public domain W3C validator