| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rtrclreclem2 | Structured version Visualization version GIF version | ||
| Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
| Ref | Expression |
|---|---|
| rtrclreclem2.1 | ⊢ (𝜑 → Rel 𝑅) |
| rtrclreclem2.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rtrclreclem2 | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12399 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 2 | ssid 3958 | . . . . . 6 ⊢ ( I ↾ ∪ ∪ 𝑅) ⊆ ( I ↾ ∪ ∪ 𝑅) | |
| 3 | rtrclreclem2.1 | . . . . . . 7 ⊢ (𝜑 → Rel 𝑅) | |
| 4 | rtrclreclem2.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | 3, 4 | relexp0d 14931 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
| 6 | 2, 5 | sseqtrrid 3979 | . . . . 5 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) |
| 7 | oveq2 7357 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
| 8 | 7 | sseq2d 3968 | . . . . . 6 ⊢ (𝑛 = 0 → (( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0))) |
| 9 | 8 | rspcev 3577 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
| 10 | 1, 6, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
| 11 | ssiun 4995 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 13 | 4 | elexd 3460 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 14 | nn0ex 12390 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 15 | ovex 7382 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 16 | 14, 15 | iunex 7903 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
| 17 | oveq1 7356 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 18 | 17 | iuneq2d 4972 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 19 | eqid 2729 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 20 | 18, 19 | fvmptg 6928 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 21 | 13, 16, 20 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 22 | 12, 21 | sseqtrrd 3973 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
| 23 | df-rtrclrec 14963 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 24 | fveq1 6821 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
| 25 | 24 | sseq2d 3968 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
| 27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ∪ cuni 4858 ∪ ciun 4941 ↦ cmpt 5173 I cid 5513 ↾ cres 5621 Rel wrel 5624 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ℕ0cn0 12384 ↑𝑟crelexp 14926 t*reccrtrcl 14962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-n0 12385 df-relexp 14927 df-rtrclrec 14963 |
| This theorem is referenced by: dfrtrcl2 14969 |
| Copyright terms: Public domain | W3C validator |