MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem2 Structured version   Visualization version   GIF version

Theorem rtrclreclem2 14417
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypothesis
Ref Expression
rtrclreclem.ex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem2 (𝜑𝑅 ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem2
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 11912 . . . . 5 1 ∈ ℕ0
2 ssidd 3989 . . . . . 6 (𝜑𝑅𝑅)
3 rtrclreclem.ex . . . . . . 7 (𝜑𝑅 ∈ V)
43relexp1d 14389 . . . . . 6 (𝜑 → (𝑅𝑟1) = 𝑅)
52, 4sseqtrrd 4007 . . . . 5 (𝜑𝑅 ⊆ (𝑅𝑟1))
6 oveq2 7163 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
76sseq2d 3998 . . . . . 6 (𝑛 = 1 → (𝑅 ⊆ (𝑅𝑟𝑛) ↔ 𝑅 ⊆ (𝑅𝑟1)))
87rspcev 3622 . . . . 5 ((1 ∈ ℕ0𝑅 ⊆ (𝑅𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
91, 5, 8sylancr 589 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
10 ssiun 4969 . . . 4 (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛) → 𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
119, 10syl 17 . . 3 (𝜑𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
12 eqidd 2822 . . . 4 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
13 oveq1 7162 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1413iuneq2d 4947 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1514adantl 484 . . . 4 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
16 nn0ex 11902 . . . . . 6 0 ∈ V
17 ovex 7188 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1816, 17iunex 7668 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1918a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
2012, 15, 3, 19fvmptd 6774 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2111, 20sseqtrrd 4007 . 2 (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
22 df-rtrclrec 14414 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
23 fveq1 6668 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2423sseq2d 3998 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2524imbi2d 343 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2622, 25ax-mp 5 . 2 ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2721, 26mpbir 233 1 (𝜑𝑅 ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  wss 3935   ciun 4918  cmpt 5145  cfv 6354  (class class class)co 7155  1c1 10537  0cn0 11896  𝑟crelexp 14378  t*reccrtrcl 14413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-seq 13369  df-relexp 14379  df-rtrclrec 14414
This theorem is referenced by:  dfrtrcl2  14420
  Copyright terms: Public domain W3C validator