MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem2 Structured version   Visualization version   GIF version

Theorem rtrclreclem2 14966
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.)
Hypotheses
Ref Expression
rtrclreclem2.1 (𝜑 → Rel 𝑅)
rtrclreclem2.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
rtrclreclem2 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem2
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12399 . . . . 5 0 ∈ ℕ0
2 ssid 3958 . . . . . 6 ( I ↾ 𝑅) ⊆ ( I ↾ 𝑅)
3 rtrclreclem2.1 . . . . . . 7 (𝜑 → Rel 𝑅)
4 rtrclreclem2.2 . . . . . . 7 (𝜑𝑅𝑉)
53, 4relexp0d 14931 . . . . . 6 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
62, 5sseqtrrid 3979 . . . . 5 (𝜑 → ( I ↾ 𝑅) ⊆ (𝑅𝑟0))
7 oveq2 7357 . . . . . . 7 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
87sseq2d 3968 . . . . . 6 (𝑛 = 0 → (( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) ↔ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)))
98rspcev 3577 . . . . 5 ((0 ∈ ℕ0 ∧ ( I ↾ 𝑅) ⊆ (𝑅𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
101, 6, 9sylancr 587 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛))
11 ssiun 4995 . . . 4 (∃𝑛 ∈ ℕ0 ( I ↾ 𝑅) ⊆ (𝑅𝑟𝑛) → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1210, 11syl 17 . . 3 (𝜑 → ( I ↾ 𝑅) ⊆ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
134elexd 3460 . . . 4 (𝜑𝑅 ∈ V)
14 nn0ex 12390 . . . . 5 0 ∈ V
15 ovex 7382 . . . . 5 (𝑅𝑟𝑛) ∈ V
1614, 15iunex 7903 . . . 4 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
17 oveq1 7356 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1817iuneq2d 4972 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
19 eqid 2729 . . . . 5 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
2018, 19fvmptg 6928 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2113, 16, 20sylancl 586 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2212, 21sseqtrrd 3973 . 2 (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
23 df-rtrclrec 14963 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
24 fveq1 6821 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2524sseq2d 3968 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (( I ↾ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2625imbi2d 340 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2723, 26ax-mp 5 . 2 ((𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ 𝑅) ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2822, 27mpbir 231 1 (𝜑 → ( I ↾ 𝑅) ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  wss 3903   cuni 4858   ciun 4941  cmpt 5173   I cid 5513  cres 5621  Rel wrel 5624  cfv 6482  (class class class)co 7349  0cc0 11009  0cn0 12384  𝑟crelexp 14926  t*reccrtrcl 14962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-n0 12385  df-relexp 14927  df-rtrclrec 14963
This theorem is referenced by:  dfrtrcl2  14969
  Copyright terms: Public domain W3C validator