![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclreclem2 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
Ref | Expression |
---|---|
rtrclreclem2.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem2.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
rtrclreclem2 | ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
2 | ssid 4031 | . . . . . 6 ⊢ ( I ↾ ∪ ∪ 𝑅) ⊆ ( I ↾ ∪ ∪ 𝑅) | |
3 | rtrclreclem2.1 | . . . . . . 7 ⊢ (𝜑 → Rel 𝑅) | |
4 | rtrclreclem2.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | 3, 4 | relexp0d 15073 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
6 | 2, 5 | sseqtrrid 4062 | . . . . 5 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) |
7 | oveq2 7456 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) | |
8 | 7 | sseq2d 4041 | . . . . . 6 ⊢ (𝑛 = 0 → (( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0))) |
9 | 8 | rspcev 3635 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟0)) → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
10 | 1, 6, 9 | sylancr 586 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛)) |
11 | ssiun 5069 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅) ⊆ (𝑅↑𝑟𝑛) → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
13 | 4 | elexd 3512 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
14 | nn0ex 12559 | . . . . 5 ⊢ ℕ0 ∈ V | |
15 | ovex 7481 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
16 | 14, 15 | iunex 8009 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
17 | oveq1 7455 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
18 | 17 | iuneq2d 5045 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
19 | eqid 2740 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
20 | 18, 19 | fvmptg 7027 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
21 | 13, 16, 20 | sylancl 585 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
22 | 12, 21 | sseqtrrd 4050 | . 2 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
23 | df-rtrclrec 15105 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
24 | fveq1 6919 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
25 | 24 | sseq2d 4041 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅) ↔ ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) ↔ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ↑𝑟crelexp 15068 t*reccrtrcl 15104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 df-relexp 15069 df-rtrclrec 15105 |
This theorem is referenced by: dfrtrcl2 15111 |
Copyright terms: Public domain | W3C validator |