MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem2 Structured version   Visualization version   GIF version

Theorem rtrclreclem2 14279
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypothesis
Ref Expression
rtrclreclem.ex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
rtrclreclem2 (𝜑𝑅 ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem2
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 11725 . . . . 5 1 ∈ ℕ0
2 ssidd 3881 . . . . . 6 (𝜑𝑅𝑅)
3 rtrclreclem.ex . . . . . . 7 (𝜑𝑅 ∈ V)
43relexp1d 14251 . . . . . 6 (𝜑 → (𝑅𝑟1) = 𝑅)
52, 4sseqtr4d 3899 . . . . 5 (𝜑𝑅 ⊆ (𝑅𝑟1))
6 oveq2 6984 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
76sseq2d 3890 . . . . . 6 (𝑛 = 1 → (𝑅 ⊆ (𝑅𝑟𝑛) ↔ 𝑅 ⊆ (𝑅𝑟1)))
87rspcev 3536 . . . . 5 ((1 ∈ ℕ0𝑅 ⊆ (𝑅𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
91, 5, 8sylancr 578 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
10 ssiun 4836 . . . 4 (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛) → 𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
119, 10syl 17 . . 3 (𝜑𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
12 eqidd 2780 . . . 4 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
13 oveq1 6983 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1413iuneq2d 4820 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1514adantl 474 . . . 4 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
16 nn0ex 11714 . . . . . 6 0 ∈ V
17 ovex 7008 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1816, 17iunex 7481 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1918a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
2012, 15, 3, 19fvmptd 6601 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2111, 20sseqtr4d 3899 . 2 (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
22 df-rtrclrec 14276 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
23 fveq1 6498 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2423sseq2d 3890 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2524imbi2d 333 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2622, 25ax-mp 5 . 2 ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2721, 26mpbir 223 1 (𝜑𝑅 ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wrex 3090  Vcvv 3416  wss 3830   ciun 4792  cmpt 5008  cfv 6188  (class class class)co 6976  1c1 10336  0cn0 11707  𝑟crelexp 14240  t*reccrtrcl 14275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-seq 13185  df-relexp 14241  df-rtrclrec 14276
This theorem is referenced by:  dfrtrcl2  14282
  Copyright terms: Public domain W3C validator