![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrtrclrec2 | Structured version Visualization version GIF version |
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) |
Ref | Expression |
---|---|
rtrclreclem.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem.2 | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
dfrtrclrec2 | ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclreclem.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | nn0ex 11714 | . . . . 5 ⊢ ℕ0 ∈ V | |
3 | ovex 7008 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
4 | 2, 3 | iunex 7481 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
5 | oveq1 6983 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
6 | 5 | iuneq2d 4820 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
7 | eqid 2779 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
8 | 6, 7 | fvmptg 6593 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
9 | 1, 4, 8 | sylancl 577 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
10 | breq 4931 | . . . 4 ⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ 𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵)) | |
11 | eliun 4796 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛))) |
13 | df-br 4930 | . . . . 5 ⊢ (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
14 | df-br 4930 | . . . . . 6 ⊢ (𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
15 | 14 | rexbii 3195 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) |
16 | 12, 13, 15 | 3bitr4g 306 | . . . 4 ⊢ (𝜑 → (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
17 | 10, 16 | sylan9bb 502 | . . 3 ⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
18 | 9, 17 | mpancom 675 | . 2 ⊢ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
19 | df-rtrclrec 14276 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
20 | fveq1 6498 | . . . . . 6 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
21 | 20 | breqd 4940 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵 ↔ 𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵)) |
22 | 21 | bibi1d 336 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
23 | 22 | imbi2d 333 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)))) |
24 | 19, 23 | ax-mp 5 | . 2 ⊢ ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
25 | 18, 24 | mpbir 223 | 1 ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∃wrex 3090 Vcvv 3416 〈cop 4447 ∪ ciun 4792 class class class wbr 4929 ↦ cmpt 5008 Rel wrel 5412 ‘cfv 6188 (class class class)co 6976 ℕ0cn0 11707 ↑𝑟crelexp 14240 t*reccrtrcl 14275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-1cn 10393 ax-addcl 10395 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-nn 11440 df-n0 11708 df-rtrclrec 14276 |
This theorem is referenced by: rtrclreclem3 14280 rtrclind 14285 |
Copyright terms: Public domain | W3C validator |