MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrclrec2 Structured version   Visualization version   GIF version

Theorem dfrtrclrec2 14769
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrclrec2.1 (𝜑 → Rel 𝑅)
Assertion
Ref Expression
dfrtrclrec2 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Distinct variable groups:   𝑅,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem dfrtrclrec2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
2 nn0ex 12239 . . . . . . 7 0 ∈ V
3 ovex 7308 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
42, 3iunex 7811 . . . . . 6 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
5 oveq1 7282 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
65iuneq2d 4953 . . . . . . 7 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
7 eqid 2738 . . . . . . 7 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
86, 7fvmptg 6873 . . . . . 6 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
91, 4, 8sylancl 586 . . . . 5 ((𝜑𝑅 ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
109ex 413 . . . 4 (𝜑 → (𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)))
11 iun0 4991 . . . . . 6 𝑛 ∈ ℕ0 ∅ = ∅
1211a1i 11 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 ∅ = ∅)
13 reldmrelexp 14732 . . . . . . 7 Rel dom ↑𝑟
1413ovprc1 7314 . . . . . 6 𝑅 ∈ V → (𝑅𝑟𝑛) = ∅)
1514iuneq2d 4953 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) = 𝑛 ∈ ℕ0 ∅)
16 fvprc 6766 . . . . 5 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = ∅)
1712, 15, 163eqtr4rd 2789 . . . 4 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1810, 17pm2.61d1 180 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
19 breq 5076 . . . 4 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵))
20 eliun 4928 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2120a1i 11 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛)))
22 df-br 5075 . . . . 5 (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
23 df-br 5075 . . . . . 6 (𝐴(𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2423rexbii 3181 . . . . 5 (∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2521, 22, 243bitr4g 314 . . . 4 (𝜑 → (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2619, 25sylan9bb 510 . . 3 ((((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2718, 26mpancom 685 . 2 (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
28 df-rtrclrec 14767 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
29 fveq1 6773 . . . . . 6 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
3029breqd 5085 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵))
3130bibi1d 344 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3231imbi2d 341 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))))
3328, 32ax-mp 5 . 2 ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3427, 33mpbir 230 1 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  c0 4256  cop 4567   ciun 4924   class class class wbr 5074  cmpt 5157  Rel wrel 5594  cfv 6433  (class class class)co 7275  0cn0 12233  𝑟crelexp 14730  t*reccrtrcl 14766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-n0 12234  df-relexp 14731  df-rtrclrec 14767
This theorem is referenced by:  rtrclreclem3  14771  rtrclind  14776
  Copyright terms: Public domain W3C validator