MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrclrec2 Structured version   Visualization version   GIF version

Theorem dfrtrclrec2 15001
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrclrec2.1 (𝜑 → Rel 𝑅)
Assertion
Ref Expression
dfrtrclrec2 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Distinct variable groups:   𝑅,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem dfrtrclrec2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . 6 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
2 nn0ex 12474 . . . . . . 7 0 ∈ V
3 ovex 7437 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
42, 3iunex 7950 . . . . . 6 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
5 oveq1 7411 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
65iuneq2d 5025 . . . . . . 7 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
7 eqid 2733 . . . . . . 7 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
86, 7fvmptg 6992 . . . . . 6 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
91, 4, 8sylancl 587 . . . . 5 ((𝜑𝑅 ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
109ex 414 . . . 4 (𝜑 → (𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)))
11 iun0 5064 . . . . . 6 𝑛 ∈ ℕ0 ∅ = ∅
1211a1i 11 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 ∅ = ∅)
13 reldmrelexp 14964 . . . . . . 7 Rel dom ↑𝑟
1413ovprc1 7443 . . . . . 6 𝑅 ∈ V → (𝑅𝑟𝑛) = ∅)
1514iuneq2d 5025 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) = 𝑛 ∈ ℕ0 ∅)
16 fvprc 6880 . . . . 5 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = ∅)
1712, 15, 163eqtr4rd 2784 . . . 4 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1810, 17pm2.61d1 180 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
19 breq 5149 . . . 4 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵))
20 eliun 5000 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2120a1i 11 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛)))
22 df-br 5148 . . . . 5 (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
23 df-br 5148 . . . . . 6 (𝐴(𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2423rexbii 3095 . . . . 5 (∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2521, 22, 243bitr4g 314 . . . 4 (𝜑 → (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2619, 25sylan9bb 511 . . 3 ((((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2718, 26mpancom 687 . 2 (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
28 df-rtrclrec 14999 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
29 fveq1 6887 . . . . . 6 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
3029breqd 5158 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵))
3130bibi1d 344 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3231imbi2d 341 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))))
3328, 32ax-mp 5 . 2 ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3427, 33mpbir 230 1 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  c0 4321  cop 4633   ciun 4996   class class class wbr 5147  cmpt 5230  Rel wrel 5680  cfv 6540  (class class class)co 7404  0cn0 12468  𝑟crelexp 14962  t*reccrtrcl 14998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-1cn 11164  ax-addcl 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-nn 12209  df-n0 12469  df-relexp 14963  df-rtrclrec 14999
This theorem is referenced by:  rtrclreclem3  15003  rtrclind  15008
  Copyright terms: Public domain W3C validator