MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrtrclrec2 Structured version   Visualization version   GIF version

Theorem dfrtrclrec2 15031
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.)
Hypothesis
Ref Expression
dfrtrclrec2.1 (𝜑 → Rel 𝑅)
Assertion
Ref Expression
dfrtrclrec2 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Distinct variable groups:   𝑅,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem dfrtrclrec2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
2 nn0ex 12455 . . . . . . 7 0 ∈ V
3 ovex 7423 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
42, 3iunex 7950 . . . . . 6 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
5 oveq1 7397 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
65iuneq2d 4989 . . . . . . 7 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
7 eqid 2730 . . . . . . 7 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
86, 7fvmptg 6969 . . . . . 6 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
91, 4, 8sylancl 586 . . . . 5 ((𝜑𝑅 ∈ V) → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
109ex 412 . . . 4 (𝜑 → (𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)))
11 iun0 5029 . . . . . 6 𝑛 ∈ ℕ0 ∅ = ∅
1211a1i 11 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 ∅ = ∅)
13 reldmrelexp 14994 . . . . . . 7 Rel dom ↑𝑟
1413ovprc1 7429 . . . . . 6 𝑅 ∈ V → (𝑅𝑟𝑛) = ∅)
1514iuneq2d 4989 . . . . 5 𝑅 ∈ V → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) = 𝑛 ∈ ℕ0 ∅)
16 fvprc 6853 . . . . 5 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = ∅)
1712, 15, 163eqtr4rd 2776 . . . 4 𝑅 ∈ V → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1810, 17pm2.61d1 180 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
19 breq 5112 . . . 4 (((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵))
20 eliun 4962 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2120a1i 11 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛)))
22 df-br 5111 . . . . 5 (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
23 df-br 5111 . . . . . 6 (𝐴(𝑅𝑟𝑛)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2423rexbii 3077 . . . . 5 (∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0𝐴, 𝐵⟩ ∈ (𝑅𝑟𝑛))
2521, 22, 243bitr4g 314 . . . 4 (𝜑 → (𝐴 𝑛 ∈ ℕ0 (𝑅𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2619, 25sylan9bb 509 . . 3 ((((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
2718, 26mpancom 688 . 2 (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
28 df-rtrclrec 15029 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
29 fveq1 6860 . . . . . 6 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
3029breqd 5121 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵))
3130bibi1d 343 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3231imbi2d 340 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))))
3328, 32ax-mp 5 . 2 ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵)))
3427, 33mpbir 231 1 (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅𝑟𝑛)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  c0 4299  cop 4598   ciun 4958   class class class wbr 5110  cmpt 5191  Rel wrel 5646  cfv 6514  (class class class)co 7390  0cn0 12449  𝑟crelexp 14992  t*reccrtrcl 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-n0 12450  df-relexp 14993  df-rtrclrec 15029
This theorem is referenced by:  rtrclreclem3  15033  rtrclind  15038
  Copyright terms: Public domain W3C validator