| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version | ||
| Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| rtrclreclem1.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rtrclreclem1 | ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12397 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 2 | ssidd 3953 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ 𝑅) | |
| 3 | rtrclreclem1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | 3 | relexp1d 14936 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
| 5 | 2, 4 | sseqtrrd 3967 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ (𝑅↑𝑟1)) |
| 6 | oveq2 7354 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
| 7 | 6 | sseq2d 3962 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅 ⊆ (𝑅↑𝑟𝑛) ↔ 𝑅 ⊆ (𝑅↑𝑟1))) |
| 8 | 7 | rspcev 3572 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 𝑅 ⊆ (𝑅↑𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
| 9 | 1, 5, 8 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
| 10 | ssiun 4993 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛) → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 12 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) | |
| 13 | oveq1 7353 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 14 | 13 | iuneq2d 4970 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 16 | 3 | elexd 3460 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 17 | nn0ex 12387 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 18 | ovex 7379 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 19 | 17, 18 | iunex 7900 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
| 21 | 12, 15, 16, 20 | fvmptd 6936 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 22 | 11, 21 | sseqtrrd 3967 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
| 23 | df-rtrclrec 14963 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 24 | fveq1 6821 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
| 25 | 24 | sseq2d 3962 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
| 27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ∪ ciun 4939 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 1c1 11007 ℕ0cn0 12381 ↑𝑟crelexp 14926 t*reccrtrcl 14962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-relexp 14927 df-rtrclrec 14963 |
| This theorem is referenced by: dfrtrcl2 14969 |
| Copyright terms: Public domain | W3C validator |