MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem1 Structured version   Visualization version   GIF version

Theorem rtrclreclem1 15106
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypothesis
Ref Expression
rtrclreclem1.1 (𝜑𝑅𝑉)
Assertion
Ref Expression
rtrclreclem1 (𝜑𝑅 ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem1
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 12569 . . . . 5 1 ∈ ℕ0
2 ssidd 4032 . . . . . 6 (𝜑𝑅𝑅)
3 rtrclreclem1.1 . . . . . . 7 (𝜑𝑅𝑉)
43relexp1d 15078 . . . . . 6 (𝜑 → (𝑅𝑟1) = 𝑅)
52, 4sseqtrrd 4050 . . . . 5 (𝜑𝑅 ⊆ (𝑅𝑟1))
6 oveq2 7456 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
76sseq2d 4041 . . . . . 6 (𝑛 = 1 → (𝑅 ⊆ (𝑅𝑟𝑛) ↔ 𝑅 ⊆ (𝑅𝑟1)))
87rspcev 3635 . . . . 5 ((1 ∈ ℕ0𝑅 ⊆ (𝑅𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
91, 5, 8sylancr 586 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
10 ssiun 5069 . . . 4 (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛) → 𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
119, 10syl 17 . . 3 (𝜑𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
12 eqidd 2741 . . . 4 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
13 oveq1 7455 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1413iuneq2d 5045 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1514adantl 481 . . . 4 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
163elexd 3512 . . . 4 (𝜑𝑅 ∈ V)
17 nn0ex 12559 . . . . . 6 0 ∈ V
18 ovex 7481 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1917, 18iunex 8009 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
2019a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
2112, 15, 16, 20fvmptd 7036 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2211, 21sseqtrrd 4050 . 2 (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
23 df-rtrclrec 15105 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
24 fveq1 6919 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2524sseq2d 4041 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2625imbi2d 340 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2723, 26ax-mp 5 . 2 ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2822, 27mpbir 231 1 (𝜑𝑅 ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   ciun 5015  cmpt 5249  cfv 6573  (class class class)co 7448  1c1 11185  0cn0 12553  𝑟crelexp 15068  t*reccrtrcl 15104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-relexp 15069  df-rtrclrec 15105
This theorem is referenced by:  dfrtrcl2  15111
  Copyright terms: Public domain W3C validator