![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
rtrclreclem1.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
rtrclreclem1 | ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12540 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
2 | ssidd 4019 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ 𝑅) | |
3 | rtrclreclem1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | 3 | relexp1d 15065 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
5 | 2, 4 | sseqtrrd 4037 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ (𝑅↑𝑟1)) |
6 | oveq2 7439 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
7 | 6 | sseq2d 4028 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅 ⊆ (𝑅↑𝑟𝑛) ↔ 𝑅 ⊆ (𝑅↑𝑟1))) |
8 | 7 | rspcev 3622 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 𝑅 ⊆ (𝑅↑𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
9 | 1, 5, 8 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
10 | ssiun 5051 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛) → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
12 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) | |
13 | oveq1 7438 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
14 | 13 | iuneq2d 5027 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
16 | 3 | elexd 3502 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
17 | nn0ex 12530 | . . . . . 6 ⊢ ℕ0 ∈ V | |
18 | ovex 7464 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
19 | 17, 18 | iunex 7992 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
21 | 12, 15, 16, 20 | fvmptd 7023 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
22 | 11, 21 | sseqtrrd 4037 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
23 | df-rtrclrec 15092 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
24 | fveq1 6906 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
25 | 24 | sseq2d 4028 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 ∪ ciun 4996 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 1c1 11154 ℕ0cn0 12524 ↑𝑟crelexp 15055 t*reccrtrcl 15091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-relexp 15056 df-rtrclrec 15092 |
This theorem is referenced by: dfrtrcl2 15098 |
Copyright terms: Public domain | W3C validator |