Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version |
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
rtrclreclem1.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
rtrclreclem1 | ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
2 | ssidd 3940 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ 𝑅) | |
3 | rtrclreclem1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | 3 | relexp1d 14668 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
5 | 2, 4 | sseqtrrd 3958 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ (𝑅↑𝑟1)) |
6 | oveq2 7263 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
7 | 6 | sseq2d 3949 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅 ⊆ (𝑅↑𝑟𝑛) ↔ 𝑅 ⊆ (𝑅↑𝑟1))) |
8 | 7 | rspcev 3552 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 𝑅 ⊆ (𝑅↑𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
9 | 1, 5, 8 | sylancr 586 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
10 | ssiun 4972 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛) → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
12 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) | |
13 | oveq1 7262 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
14 | 13 | iuneq2d 4950 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
16 | 3 | elexd 3442 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
17 | nn0ex 12169 | . . . . . 6 ⊢ ℕ0 ∈ V | |
18 | ovex 7288 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
19 | 17, 18 | iunex 7784 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
21 | 12, 15, 16, 20 | fvmptd 6864 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
22 | 11, 21 | sseqtrrd 3958 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
23 | df-rtrclrec 14695 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
24 | fveq1 6755 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
25 | 24 | sseq2d 3949 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
28 | 22, 27 | mpbir 230 | 1 ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∪ ciun 4921 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 1c1 10803 ℕ0cn0 12163 ↑𝑟crelexp 14658 t*reccrtrcl 14694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-relexp 14659 df-rtrclrec 14695 |
This theorem is referenced by: dfrtrcl2 14701 |
Copyright terms: Public domain | W3C validator |