MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclreclem1 Structured version   Visualization version   GIF version

Theorem rtrclreclem1 15009
Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypothesis
Ref Expression
rtrclreclem1.1 (𝜑𝑅𝑉)
Assertion
Ref Expression
rtrclreclem1 (𝜑𝑅 ⊆ (t*rec‘𝑅))

Proof of Theorem rtrclreclem1
Dummy variables 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 12493 . . . . 5 1 ∈ ℕ0
2 ssidd 4005 . . . . . 6 (𝜑𝑅𝑅)
3 rtrclreclem1.1 . . . . . . 7 (𝜑𝑅𝑉)
43relexp1d 14981 . . . . . 6 (𝜑 → (𝑅𝑟1) = 𝑅)
52, 4sseqtrrd 4023 . . . . 5 (𝜑𝑅 ⊆ (𝑅𝑟1))
6 oveq2 7420 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
76sseq2d 4014 . . . . . 6 (𝑛 = 1 → (𝑅 ⊆ (𝑅𝑟𝑛) ↔ 𝑅 ⊆ (𝑅𝑟1)))
87rspcev 3612 . . . . 5 ((1 ∈ ℕ0𝑅 ⊆ (𝑅𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
91, 5, 8sylancr 586 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛))
10 ssiun 5049 . . . 4 (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅𝑟𝑛) → 𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
119, 10syl 17 . . 3 (𝜑𝑅 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
12 eqidd 2732 . . . 4 (𝜑 → (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)))
13 oveq1 7419 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1413iuneq2d 5026 . . . . 5 (𝑟 = 𝑅 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
1514adantl 481 . . . 4 ((𝜑𝑟 = 𝑅) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
163elexd 3494 . . . 4 (𝜑𝑅 ∈ V)
17 nn0ex 12483 . . . . . 6 0 ∈ V
18 ovex 7445 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1917, 18iunex 7959 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
2019a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
2112, 15, 16, 20fvmptd 7005 . . 3 (𝜑 → ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
2211, 21sseqtrrd 4023 . 2 (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
23 df-rtrclrec 15008 . . 3 t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
24 fveq1 6890 . . . . 5 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))
2524sseq2d 4014 . . . 4 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2625imbi2d 340 . . 3 (t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) → ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅))))
2723, 26ax-mp 5 . 2 ((𝜑𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑𝑅 ⊆ ((𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))‘𝑅)))
2822, 27mpbir 230 1 (𝜑𝑅 ⊆ (t*rec‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wrex 3069  Vcvv 3473  wss 3948   ciun 4997  cmpt 5231  cfv 6543  (class class class)co 7412  1c1 11115  0cn0 12477  𝑟crelexp 14971  t*reccrtrcl 15007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-seq 13972  df-relexp 14972  df-rtrclrec 15008
This theorem is referenced by:  dfrtrcl2  15014
  Copyright terms: Public domain W3C validator