Step | Hyp | Ref
| Expression |
1 | | 1nn0 12484 |
. . . . 5
β’ 1 β
β0 |
2 | | ssidd 4004 |
. . . . . 6
β’ (π β π
β π
) |
3 | | rtrclreclem1.1 |
. . . . . . 7
β’ (π β π
β π) |
4 | 3 | relexp1d 14972 |
. . . . . 6
β’ (π β (π
βπ1) = π
) |
5 | 2, 4 | sseqtrrd 4022 |
. . . . 5
β’ (π β π
β (π
βπ1)) |
6 | | oveq2 7413 |
. . . . . . 7
β’ (π = 1 β (π
βππ) = (π
βπ1)) |
7 | 6 | sseq2d 4013 |
. . . . . 6
β’ (π = 1 β (π
β (π
βππ) β π
β (π
βπ1))) |
8 | 7 | rspcev 3612 |
. . . . 5
β’ ((1
β β0 β§ π
β (π
βπ1)) β
βπ β
β0 π
β (π
βππ)) |
9 | 1, 5, 8 | sylancr 587 |
. . . 4
β’ (π β βπ β β0 π
β (π
βππ)) |
10 | | ssiun 5048 |
. . . 4
β’
(βπ β
β0 π
β (π
βππ) β π
β βͺ
π β
β0 (π
βππ)) |
11 | 9, 10 | syl 17 |
. . 3
β’ (π β π
β βͺ
π β
β0 (π
βππ)) |
12 | | eqidd 2733 |
. . . 4
β’ (π β (π β V β¦ βͺ π β β0 (πβππ)) = (π β V β¦ βͺ π β β0 (πβππ))) |
13 | | oveq1 7412 |
. . . . . 6
β’ (π = π
β (πβππ) = (π
βππ)) |
14 | 13 | iuneq2d 5025 |
. . . . 5
β’ (π = π
β βͺ
π β
β0 (πβππ) = βͺ π β β0
(π
βππ)) |
15 | 14 | adantl 482 |
. . . 4
β’ ((π β§ π = π
) β βͺ
π β
β0 (πβππ) = βͺ π β β0
(π
βππ)) |
16 | 3 | elexd 3494 |
. . . 4
β’ (π β π
β V) |
17 | | nn0ex 12474 |
. . . . . 6
β’
β0 β V |
18 | | ovex 7438 |
. . . . . 6
β’ (π
βππ) β V |
19 | 17, 18 | iunex 7951 |
. . . . 5
β’ βͺ π β β0 (π
βππ) β V |
20 | 19 | a1i 11 |
. . . 4
β’ (π β βͺ π β β0 (π
βππ) β V) |
21 | 12, 15, 16, 20 | fvmptd 7002 |
. . 3
β’ (π β ((π β V β¦ βͺ π β β0 (πβππ))βπ
) = βͺ
π β
β0 (π
βππ)) |
22 | 11, 21 | sseqtrrd 4022 |
. 2
β’ (π β π
β ((π β V β¦ βͺ π β β0 (πβππ))βπ
)) |
23 | | df-rtrclrec 14999 |
. . 3
β’ t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) |
24 | | fveq1 6887 |
. . . . 5
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β (t*recβπ
) = ((π β V β¦ βͺ π β β0 (πβππ))βπ
)) |
25 | 24 | sseq2d 4013 |
. . . 4
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β (π
β (t*recβπ
) β π
β ((π β V β¦ βͺ π β β0 (πβππ))βπ
))) |
26 | 25 | imbi2d 340 |
. . 3
β’ (t*rec =
(π β V β¦
βͺ π β β0 (πβππ)) β ((π β π
β (t*recβπ
)) β (π β π
β ((π β V β¦ βͺ π β β0 (πβππ))βπ
)))) |
27 | 23, 26 | ax-mp 5 |
. 2
β’ ((π β π
β (t*recβπ
)) β (π β π
β ((π β V β¦ βͺ π β β0 (πβππ))βπ
))) |
28 | 22, 27 | mpbir 230 |
1
β’ (π β π
β (t*recβπ
)) |