| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rtrclreclem1 | Structured version Visualization version GIF version | ||
| Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| rtrclreclem1.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rtrclreclem1 | ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12458 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 2 | ssidd 3970 | . . . . . 6 ⊢ (𝜑 → 𝑅 ⊆ 𝑅) | |
| 3 | rtrclreclem1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | 3 | relexp1d 14995 | . . . . . 6 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
| 5 | 2, 4 | sseqtrrd 3984 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ (𝑅↑𝑟1)) |
| 6 | oveq2 7395 | . . . . . . 7 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
| 7 | 6 | sseq2d 3979 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅 ⊆ (𝑅↑𝑟𝑛) ↔ 𝑅 ⊆ (𝑅↑𝑟1))) |
| 8 | 7 | rspcev 3588 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 𝑅 ⊆ (𝑅↑𝑟1)) → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
| 9 | 1, 5, 8 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛)) |
| 10 | ssiun 5010 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝑅 ⊆ (𝑅↑𝑟𝑛) → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 12 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))) | |
| 13 | oveq1 7394 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 14 | 13 | iuneq2d 4986 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 16 | 3 | elexd 3471 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 17 | nn0ex 12448 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 18 | ovex 7420 | . . . . . 6 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 19 | 17, 18 | iunex 7947 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
| 21 | 12, 15, 16, 20 | fvmptd 6975 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
| 22 | 11, 21 | sseqtrrd 3984 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) |
| 23 | df-rtrclrec 15022 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 24 | fveq1 6857 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
| 25 | 24 | sseq2d 3979 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝑅 ⊆ (t*rec‘𝑅) ↔ 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 26 | 25 | imbi2d 340 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)))) |
| 27 | 23, 26 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) ↔ (𝜑 → 𝑅 ⊆ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅))) |
| 28 | 22, 27 | mpbir 231 | 1 ⊢ (𝜑 → 𝑅 ⊆ (t*rec‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 ∪ ciun 4955 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕ0cn0 12442 ↑𝑟crelexp 14985 t*reccrtrcl 15021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-relexp 14986 df-rtrclrec 15022 |
| This theorem is referenced by: dfrtrcl2 15028 |
| Copyright terms: Public domain | W3C validator |