Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-salgen | Structured version Visualization version GIF version |
Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 43880. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 43882. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.) |
Ref | Expression |
---|---|
df-salgen | ⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csalgen 43853 | . 2 class SalGen | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3432 | . . 3 class V | |
4 | vs | . . . . . . . . 9 setvar 𝑠 | |
5 | 4 | cv 1538 | . . . . . . . 8 class 𝑠 |
6 | 5 | cuni 4839 | . . . . . . 7 class ∪ 𝑠 |
7 | 2 | cv 1538 | . . . . . . . 8 class 𝑥 |
8 | 7 | cuni 4839 | . . . . . . 7 class ∪ 𝑥 |
9 | 6, 8 | wceq 1539 | . . . . . 6 wff ∪ 𝑠 = ∪ 𝑥 |
10 | 7, 5 | wss 3887 | . . . . . 6 wff 𝑥 ⊆ 𝑠 |
11 | 9, 10 | wa 396 | . . . . 5 wff (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠) |
12 | csalg 43849 | . . . . 5 class SAlg | |
13 | 11, 4, 12 | crab 3068 | . . . 4 class {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} |
14 | 13 | cint 4879 | . . 3 class ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} |
15 | 2, 3, 14 | cmpt 5157 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
16 | 1, 15 | wceq 1539 | 1 wff SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
Colors of variables: wff setvar class |
This definition is referenced by: salgenval 43862 |
Copyright terms: Public domain | W3C validator |