| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-salgen | Structured version Visualization version GIF version | ||
| Description: Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 46356. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 46358. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.) |
| Ref | Expression |
|---|---|
| df-salgen | ⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csalgen 46327 | . 2 class SalGen | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vs | . . . . . . . . 9 setvar 𝑠 | |
| 5 | 4 | cv 1539 | . . . . . . . 8 class 𝑠 |
| 6 | 5 | cuni 4907 | . . . . . . 7 class ∪ 𝑠 |
| 7 | 2 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 8 | 7 | cuni 4907 | . . . . . . 7 class ∪ 𝑥 |
| 9 | 6, 8 | wceq 1540 | . . . . . 6 wff ∪ 𝑠 = ∪ 𝑥 |
| 10 | 7, 5 | wss 3951 | . . . . . 6 wff 𝑥 ⊆ 𝑠 |
| 11 | 9, 10 | wa 395 | . . . . 5 wff (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠) |
| 12 | csalg 46323 | . . . . 5 class SAlg | |
| 13 | 11, 4, 12 | crab 3436 | . . . 4 class {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} |
| 14 | 13 | cint 4946 | . . 3 class ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} |
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: salgenval 46336 |
| Copyright terms: Public domain | W3C validator |