Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencntex Structured version   Visualization version   GIF version

Theorem salgencntex 43864
Description: This counterexample shows that df-salgen 43836 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgencntex.a 𝐴 = (0[,]2)
salgencntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgencntex.b 𝐵 = (0[,]1)
salgencntex.t 𝑇 = 𝒫 𝐵
salgencntex.c 𝐶 = (𝑆𝑇)
salgencntex.z 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
Assertion
Ref Expression
salgencntex ¬ 𝑍 ∈ SAlg
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑠   𝑆,𝑠   𝑥,𝑆   𝑇,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝐶(𝑥)   𝑇(𝑥)   𝑍(𝑥,𝑠)

Proof of Theorem salgencntex
Dummy variables 𝑡 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saluni 43847 . 2 (𝑍 ∈ SAlg → 𝑍𝑍)
2 salgencntex.z . . . . . . . 8 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
3 salgencntex.t . . . . . . . . . . . 12 𝑇 = 𝒫 𝐵
4 salgencntex.b . . . . . . . . . . . . . 14 𝐵 = (0[,]1)
5 ovex 7305 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
64, 5eqeltri 2837 . . . . . . . . . . . . 13 𝐵 ∈ V
7 pwsal 43838 . . . . . . . . . . . . 13 (𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg)
86, 7ax-mp 5 . . . . . . . . . . . 12 𝒫 𝐵 ∈ SAlg
93, 8eqeltri 2837 . . . . . . . . . . 11 𝑇 ∈ SAlg
10 salgencntex.c . . . . . . . . . . . 12 𝐶 = (𝑆𝑇)
11 inss2 4169 . . . . . . . . . . . 12 (𝑆𝑇) ⊆ 𝑇
1210, 11eqsstri 3960 . . . . . . . . . . 11 𝐶𝑇
139, 12pm3.2i 471 . . . . . . . . . 10 (𝑇 ∈ SAlg ∧ 𝐶𝑇)
14 sseq2 3952 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝐶𝑠𝐶𝑇))
1514elrab 3626 . . . . . . . . . 10 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑇 ∈ SAlg ∧ 𝐶𝑇))
1613, 15mpbir 230 . . . . . . . . 9 𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
17 intss1 4900 . . . . . . . . 9 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇)
1816, 17ax-mp 5 . . . . . . . 8 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇
192, 18eqsstri 3960 . . . . . . 7 𝑍𝑇
2019unissi 4854 . . . . . 6 𝑍 𝑇
213unieqi 4858 . . . . . . 7 𝑇 = 𝒫 𝐵
22 unipw 5370 . . . . . . 7 𝒫 𝐵 = 𝐵
2321, 22eqtri 2768 . . . . . 6 𝑇 = 𝐵
2420, 23sseqtri 3962 . . . . 5 𝑍𝐵
25 sseq2 3952 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → (𝐶𝑠𝐶𝑡))
2625elrab 3626 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2726biimpi 215 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2827simprd 496 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → 𝐶𝑡)
2928adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → 𝐶𝑡)
30 0red 10989 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ∈ ℝ)
31 2re 12058 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 2 ∈ ℝ)
33 unitssre 13242 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
34 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝑦𝐵)
3534, 4eleqtrdi 2851 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ∈ (0[,]1))
3633, 35sselid 3924 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ∈ ℝ)
3730rexrd 11036 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 0 ∈ ℝ*)
38 1xr 11045 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ*
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ*)
40 iccgelb 13146 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 0 ≤ 𝑦)
4137, 39, 35, 40syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ≤ 𝑦)
42 1re 10986 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ)
44 iccleub 13145 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 𝑦 ≤ 1)
4537, 39, 35, 44syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ≤ 1)
46 1le2 12193 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 2
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ≤ 2)
4836, 43, 32, 45, 47letrd 11143 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ≤ 2)
4930, 32, 36, 41, 48eliccd 43024 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵𝑦 ∈ (0[,]2))
50 salgencntex.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (0[,]2)
5149, 50eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵𝑦𝐴)
52 snelpwi 5364 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐴)
54 snfi 8826 . . . . . . . . . . . . . . . . . . . . 21 {𝑦} ∈ Fin
55 fict 9399 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 {𝑦} ≼ ω
5756a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵 → {𝑦} ≼ ω)
58 orc 864 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
6053, 59jca 512 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
61 breq1 5082 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
62 difeq2 4056 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
6362breq1d 5089 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
6461, 63orbi12d 916 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
65 salgencntex.s . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
6664, 65elrab2 3629 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
6760, 66sylibr 233 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑆)
68 snelpwi 5364 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
6968, 3eleqtrrdi 2852 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑇)
7067, 69elind 4133 . . . . . . . . . . . . . . 15 (𝑦𝐵 → {𝑦} ∈ (𝑆𝑇))
7110eqcomi 2749 . . . . . . . . . . . . . . . 16 (𝑆𝑇) = 𝐶
7271a1i 11 . . . . . . . . . . . . . . 15 (𝑦𝐵 → (𝑆𝑇) = 𝐶)
7370, 72eleqtrd 2843 . . . . . . . . . . . . . 14 (𝑦𝐵 → {𝑦} ∈ 𝐶)
7473adantr 481 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝐶)
7529, 74sseldd 3927 . . . . . . . . . . . 12 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝑡)
7675ralrimiva 3110 . . . . . . . . . . 11 (𝑦𝐵 → ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
77 snex 5358 . . . . . . . . . . . 12 {𝑦} ∈ V
7877elint2 4892 . . . . . . . . . . 11 ({𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
7976, 78sylibr 233 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠})
8079, 2eleqtrrdi 2852 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ 𝑍)
81 snidg 4601 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ {𝑦})
82 eleq2 2829 . . . . . . . . . 10 (𝑤 = {𝑦} → (𝑦𝑤𝑦 ∈ {𝑦}))
8382rspcev 3561 . . . . . . . . 9 (({𝑦} ∈ 𝑍𝑦 ∈ {𝑦}) → ∃𝑤𝑍 𝑦𝑤)
8480, 81, 83syl2anc 584 . . . . . . . 8 (𝑦𝐵 → ∃𝑤𝑍 𝑦𝑤)
85 eluni2 4849 . . . . . . . 8 (𝑦 𝑍 ↔ ∃𝑤𝑍 𝑦𝑤)
8684, 85sylibr 233 . . . . . . 7 (𝑦𝐵𝑦 𝑍)
8786rgen 3076 . . . . . 6 𝑦𝐵 𝑦 𝑍
88 dfss3 3914 . . . . . 6 (𝐵 𝑍 ↔ ∀𝑦𝐵 𝑦 𝑍)
8987, 88mpbir 230 . . . . 5 𝐵 𝑍
9024, 89eqssi 3942 . . . 4 𝑍 = 𝐵
91 ovex 7305 . . . . . . . . . . . . . 14 (0[,]2) ∈ V
9250, 91eqeltri 2837 . . . . . . . . . . . . 13 𝐴 ∈ V
9392a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐴 ∈ V)
9493, 65salexct 43855 . . . . . . . . . . 11 (⊤ → 𝑆 ∈ SAlg)
9594mptru 1549 . . . . . . . . . 10 𝑆 ∈ SAlg
96 inss1 4168 . . . . . . . . . . 11 (𝑆𝑇) ⊆ 𝑆
9710, 96eqsstri 3960 . . . . . . . . . 10 𝐶𝑆
9895, 97pm3.2i 471 . . . . . . . . 9 (𝑆 ∈ SAlg ∧ 𝐶𝑆)
99 sseq2 3952 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐶𝑠𝐶𝑆))
10099elrab 3626 . . . . . . . . 9 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑆 ∈ SAlg ∧ 𝐶𝑆))
10198, 100mpbir 230 . . . . . . . 8 𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
102 intss1 4900 . . . . . . . 8 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆)
103101, 102ax-mp 5 . . . . . . 7 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆
1042, 103eqsstri 3960 . . . . . 6 𝑍𝑆
105104sseli 3922 . . . . 5 (𝐵𝑍𝐵𝑆)
10650, 65, 4salexct2 43860 . . . . . 6 ¬ 𝐵𝑆
107106a1i 11 . . . . 5 (𝐵𝑍 → ¬ 𝐵𝑆)
108105, 107pm2.65i 193 . . . 4 ¬ 𝐵𝑍
10990, 108eqneltri 2834 . . 3 ¬ 𝑍𝑍
110109a1i 11 . 2 (𝑍 ∈ SAlg → ¬ 𝑍𝑍)
1111, 110pm2.65i 193 1 ¬ 𝑍 ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1542  wtru 1543  wcel 2110  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  cdif 3889  cin 3891  wss 3892  𝒫 cpw 4539  {csn 4567   cuni 4845   cint 4885   class class class wbr 5079  (class class class)co 7272  ωcom 7707  cdom 8723  Fincfn 8725  cr 10881  0cc0 10882  1c1 10883  *cxr 11019  cle 11021  2c2 12039  [,]cicc 13093  SAlgcsalg 43831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cc 10202  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-oadd 8293  df-omul 8294  df-er 8490  df-map 8609  df-pm 8610  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-acn 9711  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ioc 13095  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-limsup 15191  df-clim 15208  df-rlim 15209  df-sum 15409  df-topgen 17165  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-top 22054  df-topon 22071  df-bases 22107  df-ntr 22182  df-salg 43832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator