Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencntex Structured version   Visualization version   GIF version

Theorem salgencntex 46303
Description: This counterexample shows that df-salgen 46273 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgencntex.a 𝐴 = (0[,]2)
salgencntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgencntex.b 𝐵 = (0[,]1)
salgencntex.t 𝑇 = 𝒫 𝐵
salgencntex.c 𝐶 = (𝑆𝑇)
salgencntex.z 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
Assertion
Ref Expression
salgencntex ¬ 𝑍 ∈ SAlg
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑠   𝑆,𝑠   𝑥,𝑆   𝑇,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝐶(𝑥)   𝑇(𝑥)   𝑍(𝑥,𝑠)

Proof of Theorem salgencntex
Dummy variables 𝑡 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saluni 46285 . 2 (𝑍 ∈ SAlg → 𝑍𝑍)
2 salgencntex.z . . . . . . . 8 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
3 salgencntex.t . . . . . . . . . . . 12 𝑇 = 𝒫 𝐵
4 salgencntex.b . . . . . . . . . . . . . 14 𝐵 = (0[,]1)
5 ovex 7447 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
64, 5eqeltri 2829 . . . . . . . . . . . . 13 𝐵 ∈ V
7 pwsal 46275 . . . . . . . . . . . . 13 (𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg)
86, 7ax-mp 5 . . . . . . . . . . . 12 𝒫 𝐵 ∈ SAlg
93, 8eqeltri 2829 . . . . . . . . . . 11 𝑇 ∈ SAlg
10 salgencntex.c . . . . . . . . . . . 12 𝐶 = (𝑆𝑇)
11 inss2 4220 . . . . . . . . . . . 12 (𝑆𝑇) ⊆ 𝑇
1210, 11eqsstri 4012 . . . . . . . . . . 11 𝐶𝑇
139, 12pm3.2i 470 . . . . . . . . . 10 (𝑇 ∈ SAlg ∧ 𝐶𝑇)
14 sseq2 3992 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝐶𝑠𝐶𝑇))
1514elrab 3676 . . . . . . . . . 10 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑇 ∈ SAlg ∧ 𝐶𝑇))
1613, 15mpbir 231 . . . . . . . . 9 𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
17 intss1 4945 . . . . . . . . 9 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇)
1816, 17ax-mp 5 . . . . . . . 8 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇
192, 18eqsstri 4012 . . . . . . 7 𝑍𝑇
2019unissi 4898 . . . . . 6 𝑍 𝑇
213unieqi 4901 . . . . . . 7 𝑇 = 𝒫 𝐵
22 unipw 5437 . . . . . . 7 𝒫 𝐵 = 𝐵
2321, 22eqtri 2757 . . . . . 6 𝑇 = 𝐵
2420, 23sseqtri 4014 . . . . 5 𝑍𝐵
25 sseq2 3992 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → (𝐶𝑠𝐶𝑡))
2625elrab 3676 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2726biimpi 216 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2827simprd 495 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → 𝐶𝑡)
2928adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → 𝐶𝑡)
30 0red 11247 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ∈ ℝ)
31 2re 12323 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 2 ∈ ℝ)
33 unitssre 13522 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
34 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝑦𝐵)
3534, 4eleqtrdi 2843 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ∈ (0[,]1))
3633, 35sselid 3963 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ∈ ℝ)
3730rexrd 11294 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 0 ∈ ℝ*)
38 1xr 11303 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ*
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ*)
40 iccgelb 13426 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 0 ≤ 𝑦)
4137, 39, 35, 40syl3anc 1372 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ≤ 𝑦)
42 1re 11244 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ)
44 iccleub 13425 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 𝑦 ≤ 1)
4537, 39, 35, 44syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ≤ 1)
46 1le2 12458 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 2
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ≤ 2)
4836, 43, 32, 45, 47letrd 11401 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ≤ 2)
4930, 32, 36, 41, 48eliccd 45462 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵𝑦 ∈ (0[,]2))
50 salgencntex.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (0[,]2)
5149, 50eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵𝑦𝐴)
52 snelpwi 5430 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐴)
54 snfi 9066 . . . . . . . . . . . . . . . . . . . . 21 {𝑦} ∈ Fin
55 fict 9676 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 {𝑦} ≼ ω
5756a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵 → {𝑦} ≼ ω)
58 orc 867 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
6053, 59jca 511 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
61 breq1 5128 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
62 difeq2 4102 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
6362breq1d 5135 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
6461, 63orbi12d 918 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
65 salgencntex.s . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
6664, 65elrab2 3679 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
6760, 66sylibr 234 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑆)
68 snelpwi 5430 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
6968, 3eleqtrrdi 2844 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑇)
7067, 69elind 4182 . . . . . . . . . . . . . . 15 (𝑦𝐵 → {𝑦} ∈ (𝑆𝑇))
7110eqcomi 2743 . . . . . . . . . . . . . . . 16 (𝑆𝑇) = 𝐶
7271a1i 11 . . . . . . . . . . . . . . 15 (𝑦𝐵 → (𝑆𝑇) = 𝐶)
7370, 72eleqtrd 2835 . . . . . . . . . . . . . 14 (𝑦𝐵 → {𝑦} ∈ 𝐶)
7473adantr 480 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝐶)
7529, 74sseldd 3966 . . . . . . . . . . . 12 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝑡)
7675ralrimiva 3133 . . . . . . . . . . 11 (𝑦𝐵 → ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
77 vsnex 5416 . . . . . . . . . . . 12 {𝑦} ∈ V
7877elint2 4935 . . . . . . . . . . 11 ({𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
7976, 78sylibr 234 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠})
8079, 2eleqtrrdi 2844 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ 𝑍)
81 snidg 4642 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ {𝑦})
82 eleq2 2822 . . . . . . . . . 10 (𝑤 = {𝑦} → (𝑦𝑤𝑦 ∈ {𝑦}))
8382rspcev 3606 . . . . . . . . 9 (({𝑦} ∈ 𝑍𝑦 ∈ {𝑦}) → ∃𝑤𝑍 𝑦𝑤)
8480, 81, 83syl2anc 584 . . . . . . . 8 (𝑦𝐵 → ∃𝑤𝑍 𝑦𝑤)
85 eluni2 4893 . . . . . . . 8 (𝑦 𝑍 ↔ ∃𝑤𝑍 𝑦𝑤)
8684, 85sylibr 234 . . . . . . 7 (𝑦𝐵𝑦 𝑍)
8786rgen 3052 . . . . . 6 𝑦𝐵 𝑦 𝑍
88 dfss3 3954 . . . . . 6 (𝐵 𝑍 ↔ ∀𝑦𝐵 𝑦 𝑍)
8987, 88mpbir 231 . . . . 5 𝐵 𝑍
9024, 89eqssi 3982 . . . 4 𝑍 = 𝐵
91 ovex 7447 . . . . . . . . . . . . . 14 (0[,]2) ∈ V
9250, 91eqeltri 2829 . . . . . . . . . . . . 13 𝐴 ∈ V
9392a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐴 ∈ V)
9493, 65salexct 46294 . . . . . . . . . . 11 (⊤ → 𝑆 ∈ SAlg)
9594mptru 1546 . . . . . . . . . 10 𝑆 ∈ SAlg
96 inss1 4219 . . . . . . . . . . 11 (𝑆𝑇) ⊆ 𝑆
9710, 96eqsstri 4012 . . . . . . . . . 10 𝐶𝑆
9895, 97pm3.2i 470 . . . . . . . . 9 (𝑆 ∈ SAlg ∧ 𝐶𝑆)
99 sseq2 3992 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐶𝑠𝐶𝑆))
10099elrab 3676 . . . . . . . . 9 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑆 ∈ SAlg ∧ 𝐶𝑆))
10198, 100mpbir 231 . . . . . . . 8 𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
102 intss1 4945 . . . . . . . 8 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆)
103101, 102ax-mp 5 . . . . . . 7 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆
1042, 103eqsstri 4012 . . . . . 6 𝑍𝑆
105104sseli 3961 . . . . 5 (𝐵𝑍𝐵𝑆)
10650, 65, 4salexct2 46299 . . . . . 6 ¬ 𝐵𝑆
107106a1i 11 . . . . 5 (𝐵𝑍 → ¬ 𝐵𝑆)
108105, 107pm2.65i 194 . . . 4 ¬ 𝐵𝑍
10990, 108eqneltri 2852 . . 3 ¬ 𝑍𝑍
110109a1i 11 . 2 (𝑍 ∈ SAlg → ¬ 𝑍𝑍)
1111, 110pm2.65i 194 1 ¬ 𝑍 ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1539  wtru 1540  wcel 2107  wral 3050  wrex 3059  {crab 3420  Vcvv 3464  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4582  {csn 4608   cuni 4889   cint 4928   class class class wbr 5125  (class class class)co 7414  ωcom 7870  cdom 8966  Fincfn 8968  cr 11137  0cc0 11138  1c1 11139  *cxr 11277  cle 11279  2c2 12304  [,]cicc 13373  SAlgcsalg 46268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-omul 8494  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-topgen 17464  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-top 22867  df-topon 22884  df-bases 22919  df-ntr 22993  df-salg 46269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator