Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencntex Structured version   Visualization version   GIF version

Theorem salgencntex 43772
Description: This counterexample shows that df-salgen 43744 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgencntex.a 𝐴 = (0[,]2)
salgencntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgencntex.b 𝐵 = (0[,]1)
salgencntex.t 𝑇 = 𝒫 𝐵
salgencntex.c 𝐶 = (𝑆𝑇)
salgencntex.z 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
Assertion
Ref Expression
salgencntex ¬ 𝑍 ∈ SAlg
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐶,𝑠   𝑆,𝑠   𝑥,𝑆   𝑇,𝑠
Allowed substitution hints:   𝐴(𝑠)   𝐵(𝑠)   𝐶(𝑥)   𝑇(𝑥)   𝑍(𝑥,𝑠)

Proof of Theorem salgencntex
Dummy variables 𝑡 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 saluni 43755 . 2 (𝑍 ∈ SAlg → 𝑍𝑍)
2 salgencntex.z . . . . . . . 8 𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}
3 salgencntex.t . . . . . . . . . . . 12 𝑇 = 𝒫 𝐵
4 salgencntex.b . . . . . . . . . . . . . 14 𝐵 = (0[,]1)
5 ovex 7288 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
64, 5eqeltri 2835 . . . . . . . . . . . . 13 𝐵 ∈ V
7 pwsal 43746 . . . . . . . . . . . . 13 (𝐵 ∈ V → 𝒫 𝐵 ∈ SAlg)
86, 7ax-mp 5 . . . . . . . . . . . 12 𝒫 𝐵 ∈ SAlg
93, 8eqeltri 2835 . . . . . . . . . . 11 𝑇 ∈ SAlg
10 salgencntex.c . . . . . . . . . . . 12 𝐶 = (𝑆𝑇)
11 inss2 4160 . . . . . . . . . . . 12 (𝑆𝑇) ⊆ 𝑇
1210, 11eqsstri 3951 . . . . . . . . . . 11 𝐶𝑇
139, 12pm3.2i 470 . . . . . . . . . 10 (𝑇 ∈ SAlg ∧ 𝐶𝑇)
14 sseq2 3943 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝐶𝑠𝐶𝑇))
1514elrab 3617 . . . . . . . . . 10 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑇 ∈ SAlg ∧ 𝐶𝑇))
1613, 15mpbir 230 . . . . . . . . 9 𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
17 intss1 4891 . . . . . . . . 9 (𝑇 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇)
1816, 17ax-mp 5 . . . . . . . 8 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑇
192, 18eqsstri 3951 . . . . . . 7 𝑍𝑇
2019unissi 4845 . . . . . 6 𝑍 𝑇
213unieqi 4849 . . . . . . 7 𝑇 = 𝒫 𝐵
22 unipw 5360 . . . . . . 7 𝒫 𝐵 = 𝐵
2321, 22eqtri 2766 . . . . . 6 𝑇 = 𝐵
2420, 23sseqtri 3953 . . . . 5 𝑍𝐵
25 sseq2 3943 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑡 → (𝐶𝑠𝐶𝑡))
2625elrab 3617 . . . . . . . . . . . . . . . 16 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2726biimpi 215 . . . . . . . . . . . . . . 15 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → (𝑡 ∈ SAlg ∧ 𝐶𝑡))
2827simprd 495 . . . . . . . . . . . . . 14 (𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → 𝐶𝑡)
2928adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → 𝐶𝑡)
30 0red 10909 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ∈ ℝ)
31 2re 11977 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 2 ∈ ℝ)
33 unitssre 13160 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
34 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝑦𝐵)
3534, 4eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ∈ (0[,]1))
3633, 35sselid 3915 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ∈ ℝ)
3730rexrd 10956 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 0 ∈ ℝ*)
38 1xr 10965 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ*
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ*)
40 iccgelb 13064 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 0 ≤ 𝑦)
4137, 39, 35, 40syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → 0 ≤ 𝑦)
42 1re 10906 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ∈ ℝ)
44 iccleub 13063 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑦 ∈ (0[,]1)) → 𝑦 ≤ 1)
4537, 39, 35, 44syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝑦 ≤ 1)
46 1le2 12112 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 2
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → 1 ≤ 2)
4836, 43, 32, 45, 47letrd 11062 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵𝑦 ≤ 2)
4930, 32, 36, 41, 48eliccd 42932 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐵𝑦 ∈ (0[,]2))
50 salgencntex.a . . . . . . . . . . . . . . . . . . . 20 𝐴 = (0[,]2)
5149, 50eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵𝑦𝐴)
52 snelpwi 5354 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐴)
54 snfi 8788 . . . . . . . . . . . . . . . . . . . . 21 {𝑦} ∈ Fin
55 fict 9341 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 {𝑦} ≼ ω
5756a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐵 → {𝑦} ≼ ω)
58 orc 863 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
6053, 59jca 511 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
61 breq1 5073 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
62 difeq2 4047 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
6362breq1d 5080 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
6461, 63orbi12d 915 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
65 salgencntex.s . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
6664, 65elrab2 3620 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
6760, 66sylibr 233 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑆)
68 snelpwi 5354 . . . . . . . . . . . . . . . . 17 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
6968, 3eleqtrrdi 2850 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → {𝑦} ∈ 𝑇)
7067, 69elind 4124 . . . . . . . . . . . . . . 15 (𝑦𝐵 → {𝑦} ∈ (𝑆𝑇))
7110eqcomi 2747 . . . . . . . . . . . . . . . 16 (𝑆𝑇) = 𝐶
7271a1i 11 . . . . . . . . . . . . . . 15 (𝑦𝐵 → (𝑆𝑇) = 𝐶)
7370, 72eleqtrd 2841 . . . . . . . . . . . . . 14 (𝑦𝐵 → {𝑦} ∈ 𝐶)
7473adantr 480 . . . . . . . . . . . . 13 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝐶)
7529, 74sseldd 3918 . . . . . . . . . . . 12 ((𝑦𝐵𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}) → {𝑦} ∈ 𝑡)
7675ralrimiva 3107 . . . . . . . . . . 11 (𝑦𝐵 → ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
77 snex 5349 . . . . . . . . . . . 12 {𝑦} ∈ V
7877elint2 4883 . . . . . . . . . . 11 ({𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} {𝑦} ∈ 𝑡)
7976, 78sylibr 233 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠})
8079, 2eleqtrrdi 2850 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ 𝑍)
81 snidg 4592 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ {𝑦})
82 eleq2 2827 . . . . . . . . . 10 (𝑤 = {𝑦} → (𝑦𝑤𝑦 ∈ {𝑦}))
8382rspcev 3552 . . . . . . . . 9 (({𝑦} ∈ 𝑍𝑦 ∈ {𝑦}) → ∃𝑤𝑍 𝑦𝑤)
8480, 81, 83syl2anc 583 . . . . . . . 8 (𝑦𝐵 → ∃𝑤𝑍 𝑦𝑤)
85 eluni2 4840 . . . . . . . 8 (𝑦 𝑍 ↔ ∃𝑤𝑍 𝑦𝑤)
8684, 85sylibr 233 . . . . . . 7 (𝑦𝐵𝑦 𝑍)
8786rgen 3073 . . . . . 6 𝑦𝐵 𝑦 𝑍
88 dfss3 3905 . . . . . 6 (𝐵 𝑍 ↔ ∀𝑦𝐵 𝑦 𝑍)
8987, 88mpbir 230 . . . . 5 𝐵 𝑍
9024, 89eqssi 3933 . . . 4 𝑍 = 𝐵
91 ovex 7288 . . . . . . . . . . . . . 14 (0[,]2) ∈ V
9250, 91eqeltri 2835 . . . . . . . . . . . . 13 𝐴 ∈ V
9392a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐴 ∈ V)
9493, 65salexct 43763 . . . . . . . . . . 11 (⊤ → 𝑆 ∈ SAlg)
9594mptru 1546 . . . . . . . . . 10 𝑆 ∈ SAlg
96 inss1 4159 . . . . . . . . . . 11 (𝑆𝑇) ⊆ 𝑆
9710, 96eqsstri 3951 . . . . . . . . . 10 𝐶𝑆
9895, 97pm3.2i 470 . . . . . . . . 9 (𝑆 ∈ SAlg ∧ 𝐶𝑆)
99 sseq2 3943 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐶𝑠𝐶𝑆))
10099elrab 3617 . . . . . . . . 9 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} ↔ (𝑆 ∈ SAlg ∧ 𝐶𝑆))
10198, 100mpbir 230 . . . . . . . 8 𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠}
102 intss1 4891 . . . . . . . 8 (𝑆 ∈ {𝑠 ∈ SAlg ∣ 𝐶𝑠} → {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆)
103101, 102ax-mp 5 . . . . . . 7 {𝑠 ∈ SAlg ∣ 𝐶𝑠} ⊆ 𝑆
1042, 103eqsstri 3951 . . . . . 6 𝑍𝑆
105104sseli 3913 . . . . 5 (𝐵𝑍𝐵𝑆)
10650, 65, 4salexct2 43768 . . . . . 6 ¬ 𝐵𝑆
107106a1i 11 . . . . 5 (𝐵𝑍 → ¬ 𝐵𝑆)
108105, 107pm2.65i 193 . . . 4 ¬ 𝐵𝑍
10990, 108eqneltri 2832 . . 3 ¬ 𝑍𝑍
110109a1i 11 . 2 (𝑍 ∈ SAlg → ¬ 𝑍𝑍)
1111, 110pm2.65i 193 1 ¬ 𝑍 ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843   = wceq 1539  wtru 1540  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876   class class class wbr 5070  (class class class)co 7255  ωcom 7687  cdom 8689  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803  *cxr 10939  cle 10941  2c2 11958  [,]cicc 13011  SAlgcsalg 43739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079  df-salg 43740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator