| Step | Hyp | Ref
| Expression |
| 1 | | df-salgen 46328 |
. . 3
⊢ SalGen =
(𝑥 ∈ V ↦ ∩ {𝑠
∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → SalGen = (𝑥 ∈ V ↦ ∩ {𝑠
∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)})) |
| 3 | | unieq 4918 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ∪ 𝑥 = ∪
𝑋) |
| 4 | 3 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∪ 𝑠 = ∪
𝑥 ↔ ∪ 𝑠 =
∪ 𝑋)) |
| 5 | | sseq1 4009 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑠)) |
| 6 | 4, 5 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((∪ 𝑠 = ∪
𝑥 ∧ 𝑥 ⊆ 𝑠) ↔ (∪ 𝑠 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑠))) |
| 7 | 6 | rabbidv 3444 |
. . . 4
⊢ (𝑥 = 𝑋 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} = {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 8 | 7 | inteqd 4951 |
. . 3
⊢ (𝑥 = 𝑋 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 9 | 8 | adantl 481 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)} = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 10 | | elex 3501 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) |
| 11 | | uniexg 7760 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) |
| 12 | | pwsal 46330 |
. . . . . . 7
⊢ (∪ 𝑋
∈ V → 𝒫 ∪ 𝑋 ∈ SAlg) |
| 13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋
∈ SAlg) |
| 14 | | unipw 5455 |
. . . . . . 7
⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ∪
𝒫 ∪ 𝑋 = ∪ 𝑋) |
| 16 | | pwuni 4945 |
. . . . . . 7
⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋) |
| 18 | 13, 15, 17 | jca32 515 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝒫 ∪ 𝑋
∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 19 | | unieq 4918 |
. . . . . . . 8
⊢ (𝑠 = 𝒫 ∪ 𝑋
→ ∪ 𝑠 = ∪ 𝒫
∪ 𝑋) |
| 20 | 19 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑠 = 𝒫 ∪ 𝑋
→ (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋)) |
| 21 | | sseq2 4010 |
. . . . . . 7
⊢ (𝑠 = 𝒫 ∪ 𝑋
→ (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋)) |
| 22 | 20, 21 | anbi12d 632 |
. . . . . 6
⊢ (𝑠 = 𝒫 ∪ 𝑋
→ ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪
𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 23 | 22 | elrab 3692 |
. . . . 5
⊢
(𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝒫 ∪ 𝑋
∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 24 | 18, 23 | sylibr 234 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋
∈ {𝑠 ∈ SAlg
∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 25 | 24 | ne0d 4342 |
. . 3
⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
| 26 | | intex 5344 |
. . 3
⊢ ({𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅ ↔ ∩ {𝑠
∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ∈ V) |
| 27 | 25, 26 | sylib 218 |
. 2
⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ∈ V) |
| 28 | 2, 9, 10, 27 | fvmptd 7023 |
1
⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |