Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenval Structured version   Visualization version   GIF version

Theorem salgenval 43752
Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenval (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-salgen 43744 . . 3 SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
21a1i 11 . 2 (𝑋𝑉 → SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)}))
3 unieq 4847 . . . . . . 7 (𝑥 = 𝑋 𝑥 = 𝑋)
43eqeq2d 2749 . . . . . 6 (𝑥 = 𝑋 → ( 𝑠 = 𝑥 𝑠 = 𝑋))
5 sseq1 3942 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑠𝑋𝑠))
64, 5anbi12d 630 . . . . 5 (𝑥 = 𝑋 → (( 𝑠 = 𝑥𝑥𝑠) ↔ ( 𝑠 = 𝑋𝑋𝑠)))
76rabbidv 3404 . . . 4 (𝑥 = 𝑋 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
87inteqd 4881 . . 3 (𝑥 = 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
98adantl 481 . 2 ((𝑋𝑉𝑥 = 𝑋) → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
10 elex 3440 . 2 (𝑋𝑉𝑋 ∈ V)
11 uniexg 7571 . . . . . . 7 (𝑋𝑉 𝑋 ∈ V)
12 pwsal 43746 . . . . . . 7 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
1311, 12syl 17 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
14 unipw 5360 . . . . . . 7 𝒫 𝑋 = 𝑋
1514a1i 11 . . . . . 6 (𝑋𝑉 𝒫 𝑋 = 𝑋)
16 pwuni 4875 . . . . . . 7 𝑋 ⊆ 𝒫 𝑋
1716a1i 11 . . . . . 6 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
1813, 15, 17jca32 515 . . . . 5 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
19 unieq 4847 . . . . . . . 8 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
2019eqeq1d 2740 . . . . . . 7 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
21 sseq2 3943 . . . . . . 7 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
2220, 21anbi12d 630 . . . . . 6 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2322elrab 3617 . . . . 5 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2418, 23sylibr 233 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2524ne0d 4266 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
26 intex 5256 . . 3 ({𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅ ↔ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
2725, 26sylib 217 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
282, 9, 10, 27fvmptd 6864 1 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876  cmpt 5153  cfv 6418  SAlgcsalg 43739  SalGencsalgen 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-salg 43740  df-salgen 43744
This theorem is referenced by:  salgencl  43761  sssalgen  43764  salgenss  43765  salgenuni  43766  issalgend  43767
  Copyright terms: Public domain W3C validator