Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenval Structured version   Visualization version   GIF version

Theorem salgenval 44972
Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenval (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-salgen 44964 . . 3 SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
21a1i 11 . 2 (𝑋𝑉 → SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)}))
3 unieq 4918 . . . . . . 7 (𝑥 = 𝑋 𝑥 = 𝑋)
43eqeq2d 2744 . . . . . 6 (𝑥 = 𝑋 → ( 𝑠 = 𝑥 𝑠 = 𝑋))
5 sseq1 4006 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑠𝑋𝑠))
64, 5anbi12d 632 . . . . 5 (𝑥 = 𝑋 → (( 𝑠 = 𝑥𝑥𝑠) ↔ ( 𝑠 = 𝑋𝑋𝑠)))
76rabbidv 3441 . . . 4 (𝑥 = 𝑋 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
87inteqd 4954 . . 3 (𝑥 = 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
98adantl 483 . 2 ((𝑋𝑉𝑥 = 𝑋) → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
10 elex 3493 . 2 (𝑋𝑉𝑋 ∈ V)
11 uniexg 7725 . . . . . . 7 (𝑋𝑉 𝑋 ∈ V)
12 pwsal 44966 . . . . . . 7 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
1311, 12syl 17 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
14 unipw 5449 . . . . . . 7 𝒫 𝑋 = 𝑋
1514a1i 11 . . . . . 6 (𝑋𝑉 𝒫 𝑋 = 𝑋)
16 pwuni 4948 . . . . . . 7 𝑋 ⊆ 𝒫 𝑋
1716a1i 11 . . . . . 6 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
1813, 15, 17jca32 517 . . . . 5 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
19 unieq 4918 . . . . . . . 8 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
2019eqeq1d 2735 . . . . . . 7 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
21 sseq2 4007 . . . . . . 7 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
2220, 21anbi12d 632 . . . . . 6 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2322elrab 3682 . . . . 5 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2418, 23sylibr 233 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2524ne0d 4334 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
26 intex 5336 . . 3 ({𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅ ↔ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
2725, 26sylib 217 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
282, 9, 10, 27fvmptd 7001 1 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  wss 3947  c0 4321  𝒫 cpw 4601   cuni 4907   cint 4949  cmpt 5230  cfv 6540  SAlgcsalg 44959  SalGencsalgen 44963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-salg 44960  df-salgen 44964
This theorem is referenced by:  salgencl  44983  sssalgen  44986  salgenss  44987  salgenuni  44988  issalgend  44989
  Copyright terms: Public domain W3C validator