Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenval Structured version   Visualization version   GIF version

Theorem salgenval 45335
Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenval (𝑋 ∈ 𝑉 β†’ (SalGenβ€˜π‘‹) = ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-salgen 45327 . . 3 SalGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)})
21a1i 11 . 2 (𝑋 ∈ 𝑉 β†’ SalGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)}))
3 unieq 4918 . . . . . . 7 (π‘₯ = 𝑋 β†’ βˆͺ π‘₯ = βˆͺ 𝑋)
43eqeq2d 2741 . . . . . 6 (π‘₯ = 𝑋 β†’ (βˆͺ 𝑠 = βˆͺ π‘₯ ↔ βˆͺ 𝑠 = βˆͺ 𝑋))
5 sseq1 4006 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑠 ↔ 𝑋 βŠ† 𝑠))
64, 5anbi12d 629 . . . . 5 (π‘₯ = 𝑋 β†’ ((βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠) ↔ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)))
76rabbidv 3438 . . . 4 (π‘₯ = 𝑋 β†’ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)} = {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
87inteqd 4954 . . 3 (π‘₯ = 𝑋 β†’ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)} = ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
98adantl 480 . 2 ((𝑋 ∈ 𝑉 ∧ π‘₯ = 𝑋) β†’ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)} = ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
10 elex 3491 . 2 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ V)
11 uniexg 7732 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ βˆͺ 𝑋 ∈ V)
12 pwsal 45329 . . . . . . 7 (βˆͺ 𝑋 ∈ V β†’ 𝒫 βˆͺ 𝑋 ∈ SAlg)
1311, 12syl 17 . . . . . 6 (𝑋 ∈ 𝑉 β†’ 𝒫 βˆͺ 𝑋 ∈ SAlg)
14 unipw 5449 . . . . . . 7 βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋
1514a1i 11 . . . . . 6 (𝑋 ∈ 𝑉 β†’ βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋)
16 pwuni 4948 . . . . . . 7 𝑋 βŠ† 𝒫 βˆͺ 𝑋
1716a1i 11 . . . . . 6 (𝑋 ∈ 𝑉 β†’ 𝑋 βŠ† 𝒫 βˆͺ 𝑋)
1813, 15, 17jca32 514 . . . . 5 (𝑋 ∈ 𝑉 β†’ (𝒫 βˆͺ 𝑋 ∈ SAlg ∧ (βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝒫 βˆͺ 𝑋)))
19 unieq 4918 . . . . . . . 8 (𝑠 = 𝒫 βˆͺ 𝑋 β†’ βˆͺ 𝑠 = βˆͺ 𝒫 βˆͺ 𝑋)
2019eqeq1d 2732 . . . . . . 7 (𝑠 = 𝒫 βˆͺ 𝑋 β†’ (βˆͺ 𝑠 = βˆͺ 𝑋 ↔ βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋))
21 sseq2 4007 . . . . . . 7 (𝑠 = 𝒫 βˆͺ 𝑋 β†’ (𝑋 βŠ† 𝑠 ↔ 𝑋 βŠ† 𝒫 βˆͺ 𝑋))
2220, 21anbi12d 629 . . . . . 6 (𝑠 = 𝒫 βˆͺ 𝑋 β†’ ((βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠) ↔ (βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝒫 βˆͺ 𝑋)))
2322elrab 3682 . . . . 5 (𝒫 βˆͺ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} ↔ (𝒫 βˆͺ 𝑋 ∈ SAlg ∧ (βˆͺ 𝒫 βˆͺ 𝑋 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝒫 βˆͺ 𝑋)))
2418, 23sylibr 233 . . . 4 (𝑋 ∈ 𝑉 β†’ 𝒫 βˆͺ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
2524ne0d 4334 . . 3 (𝑋 ∈ 𝑉 β†’ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} β‰  βˆ…)
26 intex 5336 . . 3 ({𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} β‰  βˆ… ↔ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} ∈ V)
2725, 26sylib 217 . 2 (𝑋 ∈ 𝑉 β†’ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)} ∈ V)
282, 9, 10, 27fvmptd 7004 1 (𝑋 ∈ 𝑉 β†’ (SalGenβ€˜π‘‹) = ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ 𝑋 ∧ 𝑋 βŠ† 𝑠)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  {crab 3430  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949   ↦ cmpt 5230  β€˜cfv 6542  SAlgcsalg 45322  SalGencsalgen 45326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-salg 45323  df-salgen 45327
This theorem is referenced by:  salgencl  45346  sssalgen  45349  salgenss  45350  salgenuni  45351  issalgend  45352
  Copyright terms: Public domain W3C validator