| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issal | Structured version Visualization version GIF version | ||
| Description: Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| issal | ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝑥 = 𝑆 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑆)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
| 3 | unieq 4878 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ∪ 𝑥 = ∪ 𝑆) | |
| 4 | 3 | difeq1d 4084 | . . . . 5 ⊢ (𝑥 = 𝑆 → (∪ 𝑥 ∖ 𝑦) = (∪ 𝑆 ∖ 𝑦)) |
| 5 | 4, 2 | eleq12d 2822 | . . . 4 ⊢ (𝑥 = 𝑆 → ((∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ↔ (∪ 𝑆 ∖ 𝑦) ∈ 𝑆)) |
| 6 | 2, 5 | raleqbidv 3316 | . . 3 ⊢ (𝑥 = 𝑆 → (∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆)) |
| 7 | pweq 4573 | . . . 4 ⊢ (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆) | |
| 8 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝑆 → (∪ 𝑦 ∈ 𝑥 ↔ ∪ 𝑦 ∈ 𝑆)) | |
| 9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥) ↔ (𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 10 | 7, 9 | raleqbidv 3316 | . . 3 ⊢ (𝑥 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 11 | 1, 6, 10 | 3anbi123d 1438 | . 2 ⊢ (𝑥 = 𝑆 → ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
| 12 | df-salg 46280 | . 2 ⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥))} | |
| 13 | 11, 12 | elab2g 3644 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 class class class wbr 5102 ωcom 7822 ≼ cdom 8893 SAlgcsalg 46279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-ss 3928 df-pw 4561 df-uni 4868 df-salg 46280 |
| This theorem is referenced by: pwsal 46286 salunicl 46287 saluncl 46288 prsal 46289 saldifcl 46290 0sal 46291 intsal 46301 issald 46304 caragensal 46496 |
| Copyright terms: Public domain | W3C validator |