Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issal Structured version   Visualization version   GIF version

Theorem issal 42956
Description: Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
issal (𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
Distinct variable group:   𝑦,𝑆
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem issal
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2w 2873 . . 3 (𝑥 = 𝑧 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑧))
2 id 22 . . . 4 (𝑥 = 𝑧𝑥 = 𝑧)
3 unieq 4811 . . . . . 6 (𝑥 = 𝑧 𝑥 = 𝑧)
43difeq1d 4049 . . . . 5 (𝑥 = 𝑧 → ( 𝑥𝑦) = ( 𝑧𝑦))
54, 2eleq12d 2884 . . . 4 (𝑥 = 𝑧 → (( 𝑥𝑦) ∈ 𝑥 ↔ ( 𝑧𝑦) ∈ 𝑧))
62, 5raleqbidv 3354 . . 3 (𝑥 = 𝑧 → (∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ↔ ∀𝑦𝑧 ( 𝑧𝑦) ∈ 𝑧))
7 pweq 4513 . . . 4 (𝑥 = 𝑧 → 𝒫 𝑥 = 𝒫 𝑧)
8 eleq2w 2873 . . . . 5 (𝑥 = 𝑧 → ( 𝑦𝑥 𝑦𝑧))
98imbi2d 344 . . . 4 (𝑥 = 𝑧 → ((𝑦 ≼ ω → 𝑦𝑥) ↔ (𝑦 ≼ ω → 𝑦𝑧)))
107, 9raleqbidv 3354 . . 3 (𝑥 = 𝑧 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑧(𝑦 ≼ ω → 𝑦𝑧)))
111, 6, 103anbi123d 1433 . 2 (𝑥 = 𝑧 → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥)) ↔ (∅ ∈ 𝑧 ∧ ∀𝑦𝑧 ( 𝑧𝑦) ∈ 𝑧 ∧ ∀𝑦 ∈ 𝒫 𝑧(𝑦 ≼ ω → 𝑦𝑧))))
12 eleq2 2878 . . 3 (𝑧 = 𝑆 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝑆))
13 id 22 . . . 4 (𝑧 = 𝑆𝑧 = 𝑆)
14 unieq 4811 . . . . . 6 (𝑧 = 𝑆 𝑧 = 𝑆)
1514difeq1d 4049 . . . . 5 (𝑧 = 𝑆 → ( 𝑧𝑦) = ( 𝑆𝑦))
1615, 13eleq12d 2884 . . . 4 (𝑧 = 𝑆 → (( 𝑧𝑦) ∈ 𝑧 ↔ ( 𝑆𝑦) ∈ 𝑆))
1713, 16raleqbidv 3354 . . 3 (𝑧 = 𝑆 → (∀𝑦𝑧 ( 𝑧𝑦) ∈ 𝑧 ↔ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆))
18 pweq 4513 . . . 4 (𝑧 = 𝑆 → 𝒫 𝑧 = 𝒫 𝑆)
19 eleq2 2878 . . . . 5 (𝑧 = 𝑆 → ( 𝑦𝑧 𝑦𝑆))
2019imbi2d 344 . . . 4 (𝑧 = 𝑆 → ((𝑦 ≼ ω → 𝑦𝑧) ↔ (𝑦 ≼ ω → 𝑦𝑆)))
2118, 20raleqbidv 3354 . . 3 (𝑧 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑧(𝑦 ≼ ω → 𝑦𝑧) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
2212, 17, 213anbi123d 1433 . 2 (𝑧 = 𝑆 → ((∅ ∈ 𝑧 ∧ ∀𝑦𝑧 ( 𝑧𝑦) ∈ 𝑧 ∧ ∀𝑦 ∈ 𝒫 𝑧(𝑦 ≼ ω → 𝑦𝑧)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
23 df-salg 42951 . 2 SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥))}
2411, 22, 23elab2gw 3613 1 (𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cdif 3878  c0 4243  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  ωcom 7560  cdom 8490  SAlgcsalg 42950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-rab 3115  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-pw 4499  df-uni 4801  df-salg 42951
This theorem is referenced by:  pwsal  42957  salunicl  42958  saluncl  42959  prsal  42960  saldifcl  42961  0sal  42962  intsal  42970  issald  42973  caragensal  43164
  Copyright terms: Public domain W3C validator